These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31424289)
1. Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of Salimizadeh M; Shirvani M; Shariatmadari H; Mortazavi MS Int J Phytoremediation; 2020; 22(2):176-183. PubMed ID: 31424289 [TBL] [Abstract][Full Text] [Related]
2. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil. Salimizadeh M; Shirvani M; Shariatmadari H; Nikaeen M; Leili Mohebi Nozar S Int J Phytoremediation; 2018 Jun; 20(7):658-665. PubMed ID: 29723054 [TBL] [Abstract][Full Text] [Related]
3. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils. Chigbo C Bull Environ Contam Toxicol; 2015 Jun; 94(6):777-82. PubMed ID: 25917846 [TBL] [Abstract][Full Text] [Related]
4. Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using Mehmood T; Liu C; Niazi NK; Gaurav GK; Ashraf A; Bibi I Int J Phytoremediation; 2021; 23(9):899-910. PubMed ID: 33395533 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269 [TBL] [Abstract][Full Text] [Related]
6. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
7. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Sangthong C; Setkit K; Prapagdee B Environ Sci Pollut Res Int; 2016 Jan; 23(1):756-64. PubMed ID: 26336850 [TBL] [Abstract][Full Text] [Related]
8. Use of Zea mays L. in phytoremediation of trichloroethylene. Moccia E; Intiso A; Cicatelli A; Proto A; Guarino F; Iannece P; Castiglione S; Rossi F Environ Sci Pollut Res Int; 2017 Apr; 24(12):11053-11060. PubMed ID: 27619376 [TBL] [Abstract][Full Text] [Related]
9. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L. Praburaman L; Park SH; Cho M; Lee KJ; Ko JA; Han SS; Lee SH; Kamala-Kannan S; Oh BT Environ Sci Pollut Res Int; 2017 Jan; 24(3):3172-3180. PubMed ID: 27864737 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil. Liao C; Xu W; Lu G; Liang X; Guo C; Yang C; Dang Z Int J Phytoremediation; 2015; 17(7):693-700. PubMed ID: 25976883 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Chigbo C; Batty L Environ Sci Pollut Res Int; 2014 Feb; 21(4):3051-9. PubMed ID: 24185906 [TBL] [Abstract][Full Text] [Related]
12. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Wojtowicz K; Steliga T; Kapusta P; Brzeszcz J Molecules; 2023 Aug; 28(16):. PubMed ID: 37630356 [TBL] [Abstract][Full Text] [Related]
13. Removal of Chromium from Soils Cultivated with Maize (Zea Mays) After the Addition of Natural Minerals as Soil Amendments. Μolla A; Ioannou Z; Mollas S; Skoufogianni E; Dimirkou A Bull Environ Contam Toxicol; 2017 Mar; 98(3):347-352. PubMed ID: 28233031 [TBL] [Abstract][Full Text] [Related]
14. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil. Košnář Z; Mercl F; Tlustoš P Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733 [TBL] [Abstract][Full Text] [Related]
15. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using Anyasi RO; Atagana HI Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260 [TBL] [Abstract][Full Text] [Related]
16. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. Marchand C; Hogland W; Kaczala F; Jani Y; Marchand L; Augustsson A; Hijri M Int J Phytoremediation; 2016 Nov; 18(11):1136-47. PubMed ID: 27216854 [TBL] [Abstract][Full Text] [Related]
17. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. Chen Y; Tang X; Cheema SA; Liu W; Shen C J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081 [TBL] [Abstract][Full Text] [Related]
19. The effect of soil type on the bioremediation of petroleum contaminated soils. Haghollahi A; Fazaelipoor MH; Schaffie M J Environ Manage; 2016 Sep; 180():197-201. PubMed ID: 27233045 [TBL] [Abstract][Full Text] [Related]
20. Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. Federici E; Giubilei MA; Covino S; Zanaroli G; Fava F; D'Annibale A; Petruccioli M N Biotechnol; 2012 Nov; 30(1):69-79. PubMed ID: 22842102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]