BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31424902)

  • 21. Conductive elastomer composites for fully polymeric, flexible bioelectronics.
    Cuttaz E; Goding J; Vallejo-Giraldo C; Aregueta-Robles U; Lovell N; Ghezzi D; Green RA
    Biomater Sci; 2019 Mar; 7(4):1372-1385. PubMed ID: 30672514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings.
    Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM; Vetter C; Alhawwash A; Horn MR; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2085-2096. PubMed ID: 35971860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inkjet-Printed PEDOT:PSS Electrodes on Paper for Electrocardiography.
    Bihar E; Roberts T; Saadaoui M; Hervé T; De Graaf JB; Malliaras GG
    Adv Healthc Mater; 2017 Mar; 6(6):. PubMed ID: 28121395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery.
    Adly N; Teshima TF; Hassani H; Boustani GA; Weiß LJK; Cheng G; Alexander J; Wolfrum B
    Adv Healthc Mater; 2023 Jul; 12(17):e2202869. PubMed ID: 36827235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals.
    Liang Y; Offenhäusser A; Ingebrandt S; Mayer D
    Adv Healthc Mater; 2021 Jun; 10(11):e2100061. PubMed ID: 33970552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3-D Printed Adjustable Microelectrode Arrays for Electrochemical Sensing and Biosensing.
    Yang H; Rahman T; Du D; Panat R; Lin Y
    Sens Actuators B Chem; 2016 Jul; 230():600-606. PubMed ID: 27019550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
    Kolarcik CL; Catt K; Rost E; Albrecht IN; Bourbeau D; Du Z; Kozai TD; Luo X; Weber DJ; Cui XT
    J Neural Eng; 2015 Feb; 12(1):016008. PubMed ID: 25485675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring.
    Wan R; Liu S; Li Z; Li G; Li H; Li J; Xu J; Liu X
    J Colloid Interface Sci; 2024 May; ():. PubMed ID: 38816323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications.
    Zhang C; Driver N; Tian Q; Jiang W; Liu H
    J Biomed Mater Res A; 2018 Jul; 106(7):1887-1895. PubMed ID: 29520971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon polymerization lithography enabling the fabrication of PEDOT:PSS 3D structures for bioelectronic applications.
    Ruggiero A; Criscuolo V; Grasselli S; Bruno U; Ausilio C; Bovio CL; Bettucci O; Santoro F
    Chem Commun (Camb); 2022 Aug; 58(70):9790-9793. PubMed ID: 35971788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.
    Lee HJ; Lee J; Park SM
    J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation.
    Šafaříková E; Ehlich J; Stříteský S; Vala M; Weiter M; Pacherník J; Kubala L; Víteček J
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip.
    Kundu A; McCoy L; Azim N; Nguyen H; Didier CM; Ausaf T; Sharma AD; Curley JL; Moore MJ; Rajaraman S
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3018-3029. PubMed ID: 34275292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces.
    Greco F; Zucca A; Taccola S; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9461-9. PubMed ID: 23978229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air-Stable Conductive Polymer Ink for Printed Wearable Micro-Supercapacitors.
    Chu X; Chen G; Xiao X; Wang Z; Yang T; Xu Z; Huang H; Wang Y; Yan C; Chen N; Zhang H; Yang W; Chen J
    Small; 2021 Jun; 17(25):e2100956. PubMed ID: 34018685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.