These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31424933)

  • 1. Real-Space Based Benchmark of G
    Gao W; Chelikowsky JR
    J Chem Theory Comput; 2019 Oct; 15(10):5299-5307. PubMed ID: 31424933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GW100: Benchmarking G0W0 for Molecular Systems.
    van Setten MJ; Caruso F; Sharifzadeh S; Ren X; Scheffler M; Liu F; Lischner J; Lin L; Deslippe JR; Louie SG; Yang C; Weigend F; Neaton JB; Evers F; Rinke P
    J Chem Theory Comput; 2015 Dec; 11(12):5665-87. PubMed ID: 26642984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Component
    Förster A; van Lenthe E; Spadetto E; Visscher L
    J Chem Theory Comput; 2023 Sep; 19(17):5958-5976. PubMed ID: 37594901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Scaling
    Wilhelm J; Seewald P; Golze D
    J Chem Theory Comput; 2021 Mar; 17(3):1662-1677. PubMed ID: 33621085
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing GW Approaches for Predicting Core Level Binding Energies.
    van Setten MJ; Costa R; Viñes F; Illas F
    J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Order Scaling
    Förster A; Visscher L
    J Chem Theory Comput; 2020 Dec; 16(12):7381-7399. PubMed ID: 33174743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate GW frontier orbital energies of 134 kilo molecules.
    Fediai A; Reiser P; Peña JEO; Friederich P; Wenzel W
    Sci Data; 2023 Sep; 10(1):581. PubMed ID: 37669957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.
    Schmidt MW; Hull EA; Windus TL
    J Phys Chem A; 2015 Oct; 119(41):10408-27. PubMed ID: 26430954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate treatment of semicore states in GW calculations with application to Au clusters.
    Xian J; Baroni S; Umari P
    J Chem Phys; 2014 Mar; 140(12):124101. PubMed ID: 24697418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes.
    Wilhelm J; Del Ben M; Hutter J
    J Chem Theory Comput; 2016 Aug; 12(8):3623-35. PubMed ID: 27348184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Efficient
    Koval P; Ljungberg MP; Müller M; Sánchez-Portal D
    J Chem Theory Comput; 2019 Aug; 15(8):4564-4580. PubMed ID: 31318555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory for comprehensive orbital energy calculations.
    Nakata A; Tsuneda T
    J Chem Phys; 2013 Aug; 139(6):064102. PubMed ID: 23947838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural virtual orbitals for the GW method in the random-phase approximation and beyond.
    Monzel L; Holzer C; Klopper W
    J Chem Phys; 2023 Apr; 158(14):144102. PubMed ID: 37061489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recommendation of Orbitals for
    Zhang L; Shu Y; Xing C; Chen X; Sun S; Huang Y; Truhlar DG
    J Chem Theory Comput; 2022 Jun; 18(6):3523-3537. PubMed ID: 35580263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.