BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 31424953)

  • 1. Self-Passivation of 2D Ruddlesden-Popper Perovskite by Polytypic Surface PbI
    Jung HJ; Stompus CC; Kanatzidis MG; Dravid VP
    Nano Lett; 2019 Sep; 19(9):6109-6117. PubMed ID: 31424953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruddlesden-Popper 2D perovskites of type (C
    Rahil M; Ansari RM; Prakash C; Islam SS; Dixit A; Ahmad S
    Sci Rep; 2022 Feb; 12(1):2176. PubMed ID: 35140250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-(Aminoethyl)pyridine as a Bifunctional Spacer Cation for Efficient and Stable 2D Ruddlesden-Popper Perovskite Solar Cells.
    Li Y; Cheng H; Zhao K; Wang ZS
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37804-37811. PubMed ID: 31550115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-2D Ruddlesden-Popper Lead Halide Perovskites: How Edge Matters.
    Maiti A; Pal AJ
    J Phys Chem Lett; 2022 Oct; 13(42):9875-9882. PubMed ID: 36251849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties.
    Chang YH; Lin JC; Chen YC; Kuo TR; Wang DY
    Nanoscale Res Lett; 2018 Aug; 13(1):247. PubMed ID: 30136147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites.
    Tang J; Tian W; Zhao C; Sun Q; Zhang C; Cheng H; Shi Y; Jin S
    ACS Omega; 2022 Mar; 7(12):10365-10371. PubMed ID: 35382338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated Formation of 2D Ruddlesden-Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications.
    Gowdru SM; Lin JC; Wang ST; Chen YC; Wu KC; Jiang CN; Chen YD; Li SS; Chang YJ; Wang DY
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenophene-Based 2D Ruddlesden-Popper Perovskite Solar Cells with an Efficiency Exceeding 19.
    Fu Q; Chen M; Li Q; Liu H; Wang R; Liu Y
    J Am Chem Soc; 2023 Oct; 145(39):21687-21695. PubMed ID: 37750835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulky ammonium iodide and in-situ formed 2D Ruddlesden-Popper layer enhances the stability and efficiency of perovskite solar cells.
    Du Y; Wu J; Li G; Wang X; Song Z; Deng C; Chen Q; Zou Y; Sun W; Lan Z
    J Colloid Interface Sci; 2022 May; 614():247-255. PubMed ID: 35101672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bication-Mediated Quasi-2D Halide Perovskites for High-Performance Flexible Photodetectors: From Ruddlesden-Popper Type to Dion-Jacobson Type.
    Lai Z; Dong R; Zhu Q; Meng Y; Wang F; Li F; Bu X; Kang X; Zhang H; Quan Q; Wang W; Wang F; Yip S; Ho JC
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39567-39577. PubMed ID: 32805871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Ruddlesden-Popper Polycrystalline PerovskitePyro-Phototronic Photodetectors.
    Wan J; Yuan H; Xiao Z; Sun J; Peng Y; Zhang D; Yuan X; Zhang J; Li Z; Dai G; Yang J
    Small; 2023 Sep; 19(38):e2207185. PubMed ID: 37226387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19.
    Lai H; Lu D; Xu Z; Zheng N; Xie Z; Liu Y
    Adv Mater; 2020 Aug; 32(33):e2001470. PubMed ID: 32627858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations.
    Zhao S; Xiao L
    Phys Chem Chem Phys; 2021 Dec; 24(1):403-410. PubMed ID: 34897315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications.
    Babaei M; Ahmadi V; Darvish G
    Phys Chem Chem Phys; 2022 Sep; 24(35):21052-21060. PubMed ID: 36004762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden-Popper perovskite photodetectors.
    Kim J; Lee W; Cho K; Ahn H; Lee J; Baek KY; Kim JK; Kang K; Lee T
    Nanotechnology; 2021 Apr; 32(18):185203. PubMed ID: 33498023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion Exchange of Ruddlesden-Popper Lead Halide Perovskites Produces Stable Lateral Heterostructures.
    Roy CR; Pan D; Wang Y; Hautzinger MP; Zhao Y; Wright JC; Zhu Z; Jin S
    J Am Chem Soc; 2021 Apr; 143(13):5212-5221. PubMed ID: 33759522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer.
    Fu Y; Zheng W; Wang X; Hautzinger MP; Pan D; Dang L; Wright JC; Pan A; Jin S
    J Am Chem Soc; 2018 Nov; 140(46):15675-15683. PubMed ID: 30371066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Ruddlesden-Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15.
    Lai H; Kan B; Liu T; Zheng N; Xie Z; Zhou T; Wan X; Zhang X; Liu Y; Chen Y
    J Am Chem Soc; 2018 Sep; 140(37):11639-11646. PubMed ID: 30157626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites.
    Zhang Q; Solanki A; Parida K; Giovanni D; Li M; Jansen TLC; Pshenichnikov MS; Sum TC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13523-13532. PubMed ID: 30854841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Thiophene-Based Interlayer Cations for Enhanced Performance in 2D Ruddlesden-Popper Perovskite Solar Cells.
    Li K; Gan X; Zheng R; Zhang H; Xiang M; Dai S; Du D; Zhang F; Guo L; Liu H
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7161-7170. PubMed ID: 38306453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.