BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 3142522)

  • 21. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA.
    Kakhniashvili DG; Smailov SK; Gavrilova LP
    FEBS Lett; 1986 Feb; 196(1):103-7. PubMed ID: 3510907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis.
    Thompson RC; Dix DB; Karim AM
    J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid - ribosome complexes.
    San Millan MJ; Vazquez D; Modolell J
    Eur J Biochem; 1975 Sep; 57(2):431-40. PubMed ID: 1100406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced turnover of the elongation factor EF-1 X ribosome complex after treatment with the protein synthesis inhibitor II from barley seeds.
    Nilsson L; Asano K; Svensson B; Poulsen FM; Nygård O
    Biochim Biophys Acta; 1986 Oct; 868(1):62-70. PubMed ID: 3756169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate.
    Girbes T; Vazquez D; Modolell J
    Eur J Biochem; 1976 Aug; 67(1):257-65. PubMed ID: 786622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Undecagold cluster modified tRNA(Phe) from Escherichia coli and its activity in the protein elongation cycle.
    Blechschmidt B; Shirokov V; Sprinzl M
    Eur J Biochem; 1994 Jan; 219(1-2):65-71. PubMed ID: 8307030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosomal protein L1 from Escherichia coli. Its role in the binding of tRNA to the ribosome and in elongation factor g-dependent gtp hydrolysis.
    Sander G
    J Biol Chem; 1983 Aug; 258(16):10098-103. PubMed ID: 6350280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of tRNA located at the P-site on the turnover of EF-Tu.GTP on ribosomes.
    Abrahams JP; Acampo JJ; Kraal B; Bosch L
    Biochimie; 1991; 73(7-8):1089-92. PubMed ID: 1742352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA.
    Borowski C; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4202-6. PubMed ID: 8633041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu.
    Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin.
    Duisterwinkel FJ; De Graaf JM; Schretlen PJ; Kraal B; Bosch L
    Eur J Biochem; 1981 Jun; 117(1):7-12. PubMed ID: 7021158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tRNA and the guanosinetriphosphatase activity of elongation factor Tu.
    Swart GW; Parmeggiani A
    Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G.
    Chinali G; Parmeggiani A
    J Biol Chem; 1980 Aug; 255(15):7455-9. PubMed ID: 6104671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic acid analogues.
    Wagner T; Sprinzl M
    Biochemistry; 1983 Jan; 22(1):94-8. PubMed ID: 6338920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation?
    Ehrenberg M; Rojas AM; Weiser J; Kurland CG
    J Mol Biol; 1990 Feb; 211(4):739-49. PubMed ID: 2179565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.