These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31425306)

  • 1. Image-guidance, Robotics, and the Future of Spine Surgery.
    Ahern DP; Gibbons D; Schroeder GD; Vaccaro AR; Butler JS
    Clin Spine Surg; 2020 Jun; 33(5):179-184. PubMed ID: 31425306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigation and Robotics in Spinal Surgery: Where Are We Now?
    Overley SC; Cho SK; Mehta AI; Arnold PM
    Neurosurgery; 2017 Mar; 80(3S):S86-S99. PubMed ID: 28350944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologic Evolution of Navigation and Robotics in Spine Surgery: A Historical Perspective.
    Mao JZ; Agyei JO; Khan A; Hess RM; Jowdy PK; Mullin JP; Pollina J
    World Neurosurg; 2021 Jan; 145():159-167. PubMed ID: 32916361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Present and Future Spinal Robotic and Enabling Technologies.
    Khalsa SSS; Mummaneni PV; Chou D; Park P
    Oper Neurosurg (Hagerstown); 2021 Jun; 21(Suppl 1):S48-S56. PubMed ID: 34128072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-Guided Navigation and Robotics in Spine Surgery.
    Kochanski RB; Lombardi JM; Laratta JL; Lehman RA; O'Toole JE
    Neurosurgery; 2019 Jun; 84(6):1179-1189. PubMed ID: 30615160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technology improvements for image-guided and minimally invasive spine procedures.
    Cleary K; Clifford M; Stoianovici D; Freedman M; Mun SK; Watson V
    IEEE Trans Inf Technol Biomed; 2002 Dec; 6(4):249-61. PubMed ID: 15224839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Tissue Manipulation and Resection in Spine Surgery.
    Trybula SJ; Oyon DE; Wolinsky JP
    Neurosurg Clin N Am; 2020 Jan; 31(1):121-129. PubMed ID: 31739922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and control of an image-guided robot for spine surgery in a hybrid OR.
    Balicki M; Kyne S; Toporek G; Holthuizen R; Homan R; Popovic A; Burström G; Persson O; Edström E; Elmi-Terander A; Patriciu A
    Int J Med Robot; 2020 Aug; 16(4):e2108. PubMed ID: 32270913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging, Navigation, and Robotics in Spine Surgery.
    Johnson N
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 7():S32. PubMed ID: 27015071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotics in spine surgery: A systematic review.
    McKenzie DM; Westrup AM; O'Neal CM; Lee BJ; Shi HH; Dunn IF; Snyder LA; Smith ZA
    J Clin Neurosci; 2021 Jul; 89():1-7. PubMed ID: 34119250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal robotics: current applications and future perspectives.
    Roser F; Tatagiba M; Maier G
    Neurosurgery; 2013 Jan; 72 Suppl 1():12-8. PubMed ID: 23254800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Technologies in Spine Surgery.
    Chakravarthy V; Sheikh S; Schmidt E; Steinmetz M
    Neurosurg Clin N Am; 2020 Jan; 31(1):93-101. PubMed ID: 31739935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current applications and future perspectives of robotics in cerebrovascular and endovascular neurosurgery.
    Menaker SA; Shah SS; Snelling BM; Sur S; Starke RM; Peterson EC
    J Neurointerv Surg; 2018 Jan; 10(1):78-82. PubMed ID: 28821626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Videoexoscopic real-time intraoperative navigation for spinal neurosurgery: a novel co-adaptation of two existing technology platforms, technical note.
    Huang M; Barber SM; Steele WJ; Boghani Z; Desai VR; Britz GW; West GA; Trask TW; Holman PJ
    J Robot Surg; 2018 Jun; 12(2):251-255. PubMed ID: 28656505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The current state of navigation in robotic spine surgery.
    Huang M; Tetreault TA; Vaishnav A; York PJ; Staub BN
    Ann Transl Med; 2021 Jan; 9(1):86. PubMed ID: 33553379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumbar Percutaneous Pedicle Screw Breach Rates: A Comparison of Robotic Navigation Platform Versus Conventional Techniques.
    Panchmatia JR; Vaccaro AR; Wang W; Harris JA; Bucklen BS
    Clin Spine Surg; 2020 May; 33(4):E162-E167. PubMed ID: 32149744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spine surgical robotics: review of the current application and disadvantages for future perspectives.
    Huang J; Li Y; Huang L
    J Robot Surg; 2020 Feb; 14(1):11-16. PubMed ID: 31243701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study.
    Mirza SK; Wiggins GC; Kuntz C; York JE; Bellabarba C; Knonodi MA; Chapman JR; Shaffrey CI
    Spine (Phila Pa 1976); 2003 Feb; 28(4):402-13. PubMed ID: 12590219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications.
    Elswick CM; Strong MJ; Joseph JR; Saadeh Y; Oppenlander M; Park P
    Neurosurg Clin N Am; 2020 Jan; 31(1):103-110. PubMed ID: 31739920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic Spine Surgery: Past, Present, and Future.
    Perfetti DC; Kisinde S; Rogers-LaVanne MP; Satin AM; Lieberman IH
    Spine (Phila Pa 1976); 2022 Jul; 47(13):909-921. PubMed ID: 35472043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.