These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31425635)

  • 1. Factors affecting sedimentational separation of bacteria from blood.
    Pitt WG; Alizadeh M; Blanco R; Hunter AK; Bledsoe CG; McClellan DS; Wood ME; Wood RL; Ravsten TV; Hickey CL; Cameron Beard W; Stepan JR; Carter A; Husseini GA; Robison RA; Welling E; Torgesen RN; Anderson CM
    Biotechnol Prog; 2020 Jan; 36(1):e2892. PubMed ID: 31425635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid separation of bacteria from blood - Chemical aspects.
    Alizadeh M; Wood RL; Buchanan CM; Bledsoe CG; Wood ME; McClellan DS; Blanco R; Ravsten TV; Husseini GA; Hickey CL; Robison RA; Pitt WG
    Colloids Surf B Biointerfaces; 2017 Jun; 154():365-372. PubMed ID: 28365426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid separation of very low concentrations of bacteria from blood.
    Buchanan CM; Wood RL; Hoj TR; Alizadeh M; Bledsoe CG; Wood ME; McClellan DS; Blanco R; Hickey CL; Ravsten TV; Husseini GA; Robison RA; Pitt WG
    J Microbiol Methods; 2017 Aug; 139():48-53. PubMed ID: 28495585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dilution on sedimentational separation of bacteria from blood.
    Anderson CM; Pitt WG
    Biotechnol Prog; 2020 Nov; 36(6):e3056. PubMed ID: 32715664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient filter-in-centrifuge separation of low-concentration bacteria from blood.
    Zeng K; Osaid M; van der Wijngaart W
    Lab Chip; 2023 Sep; 23(19):4334-4342. PubMed ID: 37712252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics.
    Bilican I
    J Chromatogr A; 2021 Aug; 1652():462366. PubMed ID: 34242936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study.
    Moore LR; Mizutani D; Tanaka T; Buck A; Yazer M; Zborowski M; Chalmers JJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1521-1530. PubMed ID: 29476625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the recovery and detection of bloodstream pathogens from blood culture.
    Falconer K; Hammond R; Gillespie SH
    J Med Microbiol; 2020 Jun; 69(6):806-811. PubMed ID: 32490793
    [No Abstract]   [Full Text] [Related]  

  • 9. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation.
    Ukita Y; Oguro T; Takamura Y
    Biomed Microdevices; 2017 Jun; 19(2):24. PubMed ID: 28378147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of erythrocytes into age-related fractions by density or size? Counterflow centrifugation.
    Lasch J; Küllertz G; Opalka JR
    Clin Chem Lab Med; 2000 Jul; 38(7):629-32. PubMed ID: 11028769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel flow cytometric screening method for bacterial contamination of red blood cells: a proof-of-principle evaluation.
    Vollmer T; Knabbe C; Dreier J
    Transfusion; 2014 Mar; 54(3 Pt 2):900-9. PubMed ID: 24304098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EspA filament-mediated protein translocation into red blood cells.
    Shaw RK; Daniell S; Ebel F; Frankel G; Knutton S
    Cell Microbiol; 2001 Apr; 3(4):213-22. PubMed ID: 11298645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle interaction effects on blood cell sedimentation and separations.
    Van Wie BJ; Hustvedt EL
    Biorheology; 1988; 25(4):651-62. PubMed ID: 3252918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some characteristics of human red blood cells separated according to their size: a comparison with density-fractionated red blood cells.
    Vaysse J; Vassy R; Eclache V; Gattegno L; Bladier D; Pilardeau P
    Am J Hematol; 1988 Aug; 28(4):232-8. PubMed ID: 3414671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of bacteria from blood by charcoal hemoperfusion.
    Marks DH; Medina F; Lee S; Blackmon A; Schuschereba ST
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):135-40. PubMed ID: 3052639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.
    Zeming KK; Salafi T; Chen CH; Zhang Y
    Sci Rep; 2016 Mar; 6():22934. PubMed ID: 26961061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics.
    Faridi MA; Ramachandraiah H; Banerjee I; Ardabili S; Zelenin S; Russom A
    J Nanobiotechnology; 2017 Jan; 15(1):3. PubMed ID: 28052769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial activity hinders particle sedimentation.
    Singh J; Patteson AE; Torres Maldonado BO; Purohit PK; Arratia PE
    Soft Matter; 2021 Apr; 17(15):4151-4160. PubMed ID: 33881035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.