These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31425686)

  • 1. Tsetse peritrophic matrix influences for trypanosome transmission.
    Aksoy S
    J Insect Physiol; 2019 Oct; 118():103919. PubMed ID: 31425686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fine-tuned vector-parasite dialogue in tsetse's cardia determines peritrophic matrix integrity and trypanosome transmission success.
    Vigneron A; Aksoy E; Weiss BL; Bing X; Zhao X; Awuoche EO; O'Neill MB; Wu Y; Attardo GM; Aksoy S
    PLoS Pathog; 2018 Apr; 14(4):e1006972. PubMed ID: 29614112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian African trypanosome VSG coat enhances tsetse's vector competence.
    Aksoy E; Vigneron A; Bing X; Zhao X; O'Neill M; Wu YN; Bangs JD; Weiss BL; Aksoy S
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6961-6. PubMed ID: 27185908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment.
    Yang L; Weiss BL; Williams AE; Aksoy E; de Silva Orfano A; Son JH; Wu Y; Vigneron A; Karakus M; Aksoy S
    PLoS Pathog; 2021 Jun; 17(6):e1009475. PubMed ID: 34107000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.
    Weiss BL; Wang J; Maltz MA; Wu Y; Aksoy S
    PLoS Pathog; 2013; 9(4):e1003318. PubMed ID: 23637607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland.
    Matetovici I; Caljon G; Van Den Abbeele J
    BMC Genomics; 2016 Nov; 17(1):971. PubMed ID: 27884110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flying tryps: survival and maturation of trypanosomes in tsetse flies.
    Dyer NA; Rose C; Ejeh NO; Acosta-Serrano A
    Trends Parasitol; 2013 Apr; 29(4):188-96. PubMed ID: 23507033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutualist-Provisioned Resources Impact Vector Competency.
    Rio RVM; Jozwick AKS; Savage AF; Sabet A; Vigneron A; Wu Y; Aksoy S; Weiss BL
    mBio; 2019 Jun; 10(3):. PubMed ID: 31164458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of tsetse flies and trypanosomes using molecular genetics.
    Aksoy S
    Vet Parasitol; 2003 Jul; 115(2):125-45. PubMed ID: 12878419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcript expression analysis of putative Trypanosoma brucei GPI-anchored surface proteins during development in the tsetse and mammalian hosts.
    Savage AF; Cerqueira GC; Regmi S; Wu Y; El Sayed NM; Aksoy S
    PLoS Negl Trop Dis; 2012; 6(6):e1708. PubMed ID: 22724039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA sequencing of
    Vigneron A; O'Neill MB; Weiss BL; Savage AF; Campbell OC; Kamhawi S; Valenzuela JG; Aksoy S
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2613-2621. PubMed ID: 31964820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes.
    Weiss BL; Savage AF; Griffith BC; Wu Y; Aksoy S
    J Immunol; 2014 Jul; 193(2):773-82. PubMed ID: 24913976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between trypanosomes and tsetse flies.
    Roditi I; Lehane MJ
    Curr Opin Microbiol; 2008 Aug; 11(4):345-51. PubMed ID: 18621142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence.
    Griffith BC; Weiss BL; Aksoy E; Mireji PO; Auma JE; Wamwiri FN; Echodu R; Murilla G; Aksoy S
    BMC Microbiol; 2018 Nov; 18(Suppl 1):146. PubMed ID: 30470178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tsetse salivary glycoproteins are modified with paucimannosidic N-glycans, are recognised by C-type lectins and bind to trypanosomes.
    Kozak RP; Mondragon-Shem K; Williams C; Rose C; Perally S; Caljon G; Van Den Abbeele J; Wongtrakul-Kish K; Gardner RA; Spencer D; Lehane MJ; Acosta-Serrano Á
    PLoS Negl Trop Dis; 2021 Feb; 15(2):e0009071. PubMed ID: 33529215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania.
    Simwango M; Ngonyoka A; Nnko HJ; Salekwa LP; Ole-Neselle M; Kimera SI; Gwakisa PS
    Parasit Vectors; 2017 Oct; 10(1):507. PubMed ID: 29061160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis.
    Aksoy S; Gibson WC; Lehane MJ
    Adv Parasitol; 2003; 53():1-83. PubMed ID: 14587696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System.
    Radwanska M; Vereecke N; Deleeuw V; Pinto J; Magez S
    Front Immunol; 2018; 9():2253. PubMed ID: 30333827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface sialic acids taken from the host allow trypanosome survival in tsetse fly vectors.
    Nagamune K; Acosta-Serrano A; Uemura H; Brun R; Kunz-Renggli C; Maeda Y; Ferguson MA; Kinoshita T
    J Exp Med; 2004 May; 199(10):1445-50. PubMed ID: 15136592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidants promote establishment of trypanosome infections in tsetse.
    MacLeod ET; Maudlin I; Darby AC; Welburn SC
    Parasitology; 2007 Jun; 134(Pt 6):827-31. PubMed ID: 17306056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.