These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31426037)

  • 21. Nanotube Li₂MoO₄: a novel and high-capacity material as a lithium-ion battery anode.
    Liu X; Lyu Y; Zhang Z; Li H; Hu YS; Wang Z; Zhao Y; Kuang Q; Dong Y; Liang Z; Fan Q; Chen L
    Nanoscale; 2014 Nov; 6(22):13660-7. PubMed ID: 25274504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encapsulation of Fe
    Li Y; Liang T; Wang R; He B; Gong Y; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe
    Ding R; Zhang J; Qi J; Li Z; Wang C; Chen M
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13470-13478. PubMed ID: 29630832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries.
    Wu F; Huang R; Mu D; Wu B; Chen S
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19254-64. PubMed ID: 25285603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries.
    Yan Y; Xu Z; Liu C; Dou H; Wei J; Zhao X; Ma J; Dong Q; Xu H; He YS; Ma ZF; Yang X
    ACS Appl Mater Interfaces; 2019 May; 11(19):17375-17383. PubMed ID: 31008579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational Design of Hierarchical Nanotubes through Encapsulating CoSe
    Gao J; Li Y; Shi L; Li J; Zhang G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20635-20642. PubMed ID: 29799182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries.
    Yu H; Yang J; Geng H; Li CC
    Nanotechnology; 2017 Apr; 28(14):145403. PubMed ID: 28140344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes.
    Liu H; Li W; Shen D; Zhao D; Wang G
    J Am Chem Soc; 2015 Oct; 137(40):13161-6. PubMed ID: 26414170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe
    Jeon Y; Lee J; Kim M; Oh J; Hwang T; Piao Y
    Nanoscale; 2019 Mar; 11(11):4837-4845. PubMed ID: 30816391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes.
    Li Y; Liu W; Long Z; Xu P; Sun Y; Zhang X; Ma S; Jiang N
    Chemistry; 2018 Sep; 24(49):12912-12919. PubMed ID: 29802660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Situ Synthesis of Mn
    Zhang D; Li G; Fan J; Li B; Li L
    Chemistry; 2018 Jul; 24(38):9632-9638. PubMed ID: 29697864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries.
    Liu Y; Wang W; Ying Y; Wang Y; Peng X
    Dalton Trans; 2015 Apr; 44(16):7123-6. PubMed ID: 25799404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications.
    Sahoo M; Ramaprabhu S
    Nanoscale; 2015 Aug; 7(32):13379-86. PubMed ID: 26203785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Carbon-Doped Mo(Se0.85 S0.15 )2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries.
    Shi ZT; Kang W; Xu J; Sun LL; Wu C; Wang L; Yu YQ; Yu DY; Zhang W; Lee CS
    Small; 2015 Nov; 11(42):5667-74. PubMed ID: 26350033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of MoS2 @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries.
    Zhang X; Li X; Liang J; Zhu Y; Qian Y
    Small; 2016 May; 12(18):2484-91. PubMed ID: 26997521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superior shuttling of lithium and sodium ions in manganese-doped titania @ functionalized multiwall carbon nanotube anodes.
    Ata-Ur-Rehman ; Ali G; Badshah A; Chung KY; Nam KW; Jawad M; Arshad M; Abbas SM
    Nanoscale; 2017 Jul; 9(28):9859-9871. PubMed ID: 28678270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of a γ-Fe2 O3 /Ag nanowire coaxial nanocable for high-performance lithium-ion batteries.
    Geng H; Ge D; Lu S; Wang J; Ye Z; Yang Y; Zheng J; Gu H
    Chemistry; 2015 Jul; 21(31):11129-33. PubMed ID: 26102517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monodispersed Carbon-Coated Cubic NiP
    Lou P; Cui Z; Jia Z; Sun J; Tan Y; Guo X
    ACS Nano; 2017 Apr; 11(4):3705-3715. PubMed ID: 28323408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage.
    Zhang J; Wang K; Xu Q; Zhou Y; Cheng F; Guo S
    ACS Nano; 2015 Mar; 9(3):3369-76. PubMed ID: 25716070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.