These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31426049)

  • 1. Reduction of charge impurities in a silicon metal-oxide-semiconductor quantum dot qubit device patterned with nano-imprint lithography.
    Penthorn NE; Schoenfield JS; Rooney JD; Jiang H
    Nanotechnology; 2019 Nov; 30(46):465302. PubMed ID: 31426049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry.
    Wang Z; Feng M; Serrano S; Gilbert W; Leon RCC; Tanttu T; Mai P; Liang D; Huang JY; Su Y; Lim WH; Hudson FE; Escott CC; Morello A; Yang CH; Dzurak AS; Saraiva A; Laucht A
    Adv Mater; 2023 May; 35(19):e2208557. PubMed ID: 36805699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dangling Bonds as Possible Contributors to Charge Noise in Silicon and Silicon-Germanium Quantum Dot Qubits.
    Varley JB; Ray KG; Lordi V
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43111-43123. PubMed ID: 37651689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A silicon metal-oxide-semiconductor electron spin-orbit qubit.
    Jock RM; Jacobson NT; Harvey-Collard P; Mounce AM; Srinivasa V; Ward DR; Anderson J; Manginell R; Wendt JR; Rudolph M; Pluym T; Gamble JK; Baczewski AD; Witzel WM; Carroll MS
    Nat Commun; 2018 May; 9(1):1768. PubMed ID: 29720586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Coupling and Isolation of Single Electrons in Silicon Metal-Oxide-Semiconductor Quantum Dots.
    Eenink HGJ; Petit L; Lawrie WIL; Clarke JS; Vandersypen LMK; Veldhorst M
    Nano Lett; 2019 Dec; 19(12):8653-8657. PubMed ID: 31755273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform.
    Jin IK; Kumar K; Rendell MJ; Huang JY; Escott CC; Hudson FE; Lim WH; Dzurak AS; Hamilton AR; Liles SD
    Nano Lett; 2023 Feb; 23(4):1261-1266. PubMed ID: 36748989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry.
    Crippa A; Maurand R; Kotekar-Patil D; Corna A; Bohuslavskyi H; Orlov AO; Fay P; Laviéville R; Barraud S; Vinet M; Sanquer M; De Franceschi S; Jehl X
    Nano Lett; 2017 Feb; 17(2):1001-1006. PubMed ID: 28080065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
    Rossi A; Tanttu T; Hudson FE; Sun Y; Möttönen M; Dzurak AS
    J Vis Exp; 2015 Jun; (100):e52852. PubMed ID: 26067215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanometer electrodes by electro migration on an embedded metal pattern.
    Park S; Lim H; Jeon I; Lee J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9425-9. PubMed ID: 25971077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon.
    Kranz L; Gorman SK; Thorgrimsson B; He Y; Keith D; Keizer JG; Simmons MY
    Adv Mater; 2020 Oct; 32(40):e2003361. PubMed ID: 32830388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations.
    Connors EJ; Nelson J; Edge LF; Nichol JM
    Nat Commun; 2022 Feb; 13(1):940. PubMed ID: 35177606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-electron charge sensing in self-assembled quantum dots.
    Kiyama H; Korsch A; Nagai N; Kanai Y; Matsumoto K; Hirakawa K; Oiwa A
    Sci Rep; 2018 Sep; 8(1):13188. PubMed ID: 30228339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Single Layer MOS Quantum Dots for Diagnostic Qubits.
    Hong Y; Ramanayaka AN; Stein R; Stewart MD; Pomeroy JM
    J Vac Sci Technol B Nanotechnol Microelectron; 2021; 39(1):. PubMed ID: 34249479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon CMOS architecture for a spin-based quantum computer.
    Veldhorst M; Eenink HGJ; Yang CH; Dzurak AS
    Nat Commun; 2017 Dec; 8(1):1766. PubMed ID: 29242497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing charge noise in quantum dots by using thin silicon quantum wells.
    Paquelet Wuetz B; Degli Esposti D; Zwerver AJ; Amitonov SV; Botifoll M; Arbiol J; Sammak A; Vandersypen LMK; Russ M; Scappucci G
    Nat Commun; 2023 Mar; 14(1):1385. PubMed ID: 36914637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor.
    Betz AC; Wacquez R; Vinet M; Jehl X; Saraiva AL; Sanquer M; Ferguson AJ; Gonzalez-Zalba MF
    Nano Lett; 2015 Jul; 15(7):4622-7. PubMed ID: 26047255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional rotation of two strongly coupled semiconductor charge qubits.
    Li HO; Cao G; Yu GD; Xiao M; Guo GC; Jiang HW; Guo GP
    Nat Commun; 2015 Jul; 6():7681. PubMed ID: 26184756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge sensing of precisely positioned p donors in Si.
    Mahapatra S; Büch H; Simmons MY
    Nano Lett; 2011 Oct; 11(10):4376-81. PubMed ID: 21919458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots.
    Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A
    J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.