These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31426053)

  • 1. Data-driven spatial filtering for improved measurement of cortical tracking of multiple representations of speech.
    Lesenfants D; Vanthornhout J; Verschueren E; Francart T
    J Neural Eng; 2019 Oct; 16(6):066017. PubMed ID: 31426053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting individual speech intelligibility from the cortical tracking of acoustic- and phonetic-level speech representations.
    Lesenfants D; Vanthornhout J; Verschueren E; Decruy L; Francart T
    Hear Res; 2019 Sep; 380():1-9. PubMed ID: 31167150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise.
    Etard O; Reichenbach T
    J Neurosci; 2019 Jul; 39(29):5750-5759. PubMed ID: 31109963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizable EEG Encoding Models with Naturalistic Audiovisual Stimuli.
    Desai M; Holder J; Villarreal C; Clark N; Hoang B; Hamilton LS
    J Neurosci; 2021 Oct; 41(43):8946-8962. PubMed ID: 34503996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles of delta- and theta-band neural tracking for sharpening and predictive coding of multi-level speech features during spoken language processing.
    Mai G; Wang WS
    Hum Brain Mapp; 2023 Dec; 44(17):6149-6172. PubMed ID: 37818940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple Acoustic Features Can Explain Phoneme-Based Predictions of Cortical Responses to Speech.
    Daube C; Ince RAA; Gross J
    Curr Biol; 2019 Jun; 29(12):1924-1937.e9. PubMed ID: 31130454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Auditory and Speech-Specific Contributions to Cortical Envelope Tracking Revealed Using Auditory Chimeras.
    Prinsloo KD; Lalor EC
    J Neurosci; 2022 Oct; 42(41):7782-7798. PubMed ID: 36041853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating models of subcortical processing improves the ability to predict EEG responses to natural speech.
    Lindboom E; Nidiffer A; Carney LH; Lalor EC
    Hear Res; 2023 Jun; 433():108767. PubMed ID: 37060895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosodic pitch processing is represented in delta-band EEG and is dissociable from the cortical tracking of other acoustic and phonetic features.
    Teoh ES; Cappelloni MS; Lalor EC
    Eur J Neurosci; 2019 Dec; 50(11):3831-3842. PubMed ID: 31287601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope.
    Destoky F; Philippe M; Bertels J; Verhasselt M; Coquelet N; Vander Ghinst M; Wens V; De Tiège X; Bourguignon M
    Neuroimage; 2019 Jan; 184():201-213. PubMed ID: 30205208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indexing cortical entrainment to natural speech at the phonemic level: Methodological considerations for applied research.
    Di Liberto GM; Lalor EC
    Hear Res; 2017 May; 348():70-77. PubMed ID: 28246030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.
    Khalighinejad B; Cruzatto da Silva G; Mesgarani N
    J Neurosci; 2017 Feb; 37(8):2176-2185. PubMed ID: 28119400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congruent audiovisual speech enhances auditory attention decoding with EEG.
    Fu Z; Wu X; Chen J
    J Neural Eng; 2019 Nov; 16(6):066033. PubMed ID: 31505476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural tracking of the speech envelope in cochlear implant users.
    Somers B; Verschueren E; Francart T
    J Neural Eng; 2019 Feb; 16(1):016003. PubMed ID: 30444216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    J Neurosci; 2017 Aug; 37(33):7906-7920. PubMed ID: 28716965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions.
    Correia JM; Jansma BM; Bonte M
    J Neurosci; 2015 Nov; 35(45):15015-25. PubMed ID: 26558773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical Tracking of Complex Sound Envelopes: Modeling the Changes in Response with Intensity.
    Drennan DP; Lalor EC
    eNeuro; 2019; 6(3):. PubMed ID: 31171606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-aware spatial filtering for single-trial neural response and temporal response function estimation in high-density EEG with applications in auditory research.
    Das N; Vanthornhout J; Francart T; Bertrand A
    Neuroimage; 2020 Jan; 204():116211. PubMed ID: 31546052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.
    Makov S; Sharon O; Ding N; Ben-Shachar M; Nir Y; Zion Golumbic E
    J Neurosci; 2017 Aug; 37(32):7772-7781. PubMed ID: 28626013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delta/theta band EEG differentially tracks low and high frequency speech-derived envelopes.
    Bröhl F; Kayser C
    Neuroimage; 2021 Jun; 233():117958. PubMed ID: 33744458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.