These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cross-Hemisphere Study Reveals Geographically Ubiquitous, Plastic-Specific Bacteria Emerging from the Rare and Unexplored Biosphere. Scales BS; Cable RN; Duhaime MB; Gerdts G; Fischer F; Fischer D; Mothes S; Hintzki L; Moldaenke L; Ruwe M; Kalinowski J; Kreikemeyer B; Pedrotti ML; Gorsky G; Elineau A; Labrenz M; Oberbeckmann S mSphere; 2021 Jun; 6(3):e0085120. PubMed ID: 34106771 [TBL] [Abstract][Full Text] [Related]
4. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Schymanski D; Goldbeck C; Humpf HU; Fürst P Water Res; 2018 Feb; 129():154-162. PubMed ID: 29145085 [TBL] [Abstract][Full Text] [Related]
5. Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. Mohanrasu K; Premnath N; Siva Prakash G; Sudhakar M; Boobalan T; Arun A J Photochem Photobiol B; 2018 Aug; 185():55-65. PubMed ID: 29864727 [TBL] [Abstract][Full Text] [Related]
6. Selective enrichment of bacterial pathogens by microplastic biofilm. Wu X; Pan J; Li M; Li Y; Bartlam M; Wang Y Water Res; 2019 Nov; 165():114979. PubMed ID: 31445309 [TBL] [Abstract][Full Text] [Related]
7. Size-selective feeding of Arenicola marina promotes long-term burial of microplastic particles in marine sediments. Gebhardt C; Forster S Environ Pollut; 2018 Nov; 242(Pt B):1777-1786. PubMed ID: 30076054 [TBL] [Abstract][Full Text] [Related]
8. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Schippers A; Neretin LN Environ Microbiol; 2006 Jul; 8(7):1251-60. PubMed ID: 16817933 [TBL] [Abstract][Full Text] [Related]
9. Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification. Horton AA; Svendsen C; Williams RJ; Spurgeon DJ; Lahive E Mar Pollut Bull; 2017 Jan; 114(1):218-226. PubMed ID: 27692488 [TBL] [Abstract][Full Text] [Related]
10. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Scott N; Porter A; Santillo D; Simpson H; Lloyd-Williams S; Lewis C Mar Pollut Bull; 2019 Sep; 146():125-133. PubMed ID: 31426140 [TBL] [Abstract][Full Text] [Related]
11. Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment. Blumenröder J; Sechet P; Kakkonen JE; Hartl MGJ Mar Pollut Bull; 2017 Nov; 124(1):112-120. PubMed ID: 28709522 [TBL] [Abstract][Full Text] [Related]
12. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms. Kleinteich J; Seidensticker S; Marggrander N; Zarfl C Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29414906 [TBL] [Abstract][Full Text] [Related]
13. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
14. Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Suárez-Suárez A; López-López A; Tovar-Sánchez A; Yarza P; Orfila A; Terrados J; Arnds J; Marqués S; Niemann H; Schmitt-Kopplin P; Amann R; Rosselló-Móra R Environ Microbiol; 2011 Jun; 13(6):1488-99. PubMed ID: 21414123 [TBL] [Abstract][Full Text] [Related]
15. Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas. Mu J; Qu L; Jin F; Zhang S; Fang C; Ma X; Zhang W; Huo C; Cong Y; Wang J Environ Pollut; 2019 Feb; 245():122-130. PubMed ID: 30415031 [TBL] [Abstract][Full Text] [Related]
16. Accelerated weathering affects the chemical and physical properties of marine antifouling paint microplastics and their identification by ATR-FTIR spectroscopy. Simon M; Vianello A; Shashoua Y; Vollertsen J Chemosphere; 2021 Jul; 274():129749. PubMed ID: 33540312 [TBL] [Abstract][Full Text] [Related]
17. Multi-Modal Compositional Analysis of Layered Paint Chips of Automobiles by the Combined Application of ATR-FTIR Imaging, Raman Microspectrometry, and SEM/EDX. Malek MA; Nakazawa T; Kang HW; Tsuji K; Ro CU Molecules; 2019 Apr; 24(7):. PubMed ID: 30965685 [TBL] [Abstract][Full Text] [Related]
18. Distinct community structure and microbial functions of biofilms colonizing microplastics. Miao L; Wang P; Hou J; Yao Y; Liu Z; Liu S; Li T Sci Total Environ; 2019 Feb; 650(Pt 2):2395-2402. PubMed ID: 30292995 [TBL] [Abstract][Full Text] [Related]
19. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Frère L; Maignien L; Chalopin M; Huvet A; Rinnert E; Morrison H; Kerninon S; Cassone AL; Lambert C; Reveillaud J; Paul-Pont I Environ Pollut; 2018 Nov; 242(Pt A):614-625. PubMed ID: 30014939 [TBL] [Abstract][Full Text] [Related]
20. Microplastic-associated biofilms in lentic Italian ecosystems. Di Pippo F; Venezia C; Sighicelli M; Pietrelli L; Di Vito S; Nuglio S; Rossetti S Water Res; 2020 Dec; 187():116429. PubMed ID: 32961457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]