These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31426151)

  • 1. Physiological responses of a coccolithophore to multiple environmental drivers.
    Jin P; Liu N; Gao K
    Mar Pollut Bull; 2019 Sep; 146():225-235. PubMed ID: 31426151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.
    Jin P; Gao K; Villafañe VE; Campbell DA; Helbling EW
    Plant Physiol; 2013 Aug; 162(4):2084-94. PubMed ID: 23749851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.
    Sett S; Bach LT; Schulz KG; Koch-Klavsen S; Lebrato M; Riebesell U
    PLoS One; 2014; 9(2):e88308. PubMed ID: 24505472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification.
    Jin P; Gao K; Beardall J
    Evolution; 2013 Jul; 67(7):1869-78. PubMed ID: 23815645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers.
    Gutiérrez D; Gutiérrez E; Pérez P; Morcuende R; Verdejo AL; Martinez-Carrasco R
    Physiol Plant; 2009 Sep; 137(1):86-100. PubMed ID: 19570134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcification Moderates the Increased Susceptibility to UV Radiation of the Coccolithophorid Gephryocapsa oceanica Grown under Elevated CO
    Miao H; Beardall J; Gao K
    Photochem Photobiol; 2018 Sep; 94(5):994-1002. PubMed ID: 29701244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.
    Kottmeier DM; Rokitta SD; Rost B
    New Phytol; 2016 Jul; 211(1):126-37. PubMed ID: 26918275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past.
    Moolna A; Rickaby RE
    Geobiology; 2012 Jan; 10(1):72-81. PubMed ID: 22118223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of silicon on photosynthetic characteristics of Indocalamus barbatus under simulated acid rain stress].
    Xie YF; Yang WH; Lu MR; Cai XL; Zhou J
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1179-84. PubMed ID: 18808005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO
    Zhang Y; Gao K
    J Photochem Photobiol B; 2021 Apr; 217():112145. PubMed ID: 33735745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and Ecological Responses of Photosynthetic Processes to Oceanic Properties and Phytoplankton Communities in the Oligotrophic Western Pacific Ocean.
    Wei Y; Chen Z; Guo C; Zhong Q; Wu C; Sun J
    Front Microbiol; 2020; 11():1774. PubMed ID: 32849398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy partitioning and quenching during cold acclimation in Scots pine.
    Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G
    Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of photosynthesis and light energy partitioning in Amorphophallus xiei grown along a light-intensity gradient.].
    Fu Z; Xie SQ; Xu WG; Yan S; Chen JW
    Ying Yong Sheng Tai Xue Bao; 2016 Apr; 27(4):1177-1188. PubMed ID: 29732774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations.
    Jin P; Gao K
    Mar Pollut Bull; 2016 Feb; 103(1-2):101-108. PubMed ID: 26746379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen-limitation exacerbates the impact of ultraviolet radiation on the coccolithophore Gephyrocapsa oceanica.
    Jiang X; Zhang Y; Hutchins DA; Gao K
    J Photochem Photobiol B; 2022 Jan; 226():112368. PubMed ID: 34864530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of growth and photosynthesis of Emiliania huxleyi to visible and UV irradiances under different light regimes.
    Xing T; Gao K; Beardall J
    Photochem Photobiol; 2015; 91(2):343-9. PubMed ID: 25516074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 May; 372():192-204. PubMed ID: 25747776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification.
    Chen S; Gao K; Beardall J
    Glob Chang Biol; 2015 Feb; 21(2):629-36. PubMed ID: 25252139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.