BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31426281)

  • 1. Dirhamnolipid Produced by the Pathogenic Fungus
    Xu Z; Shi M; Tian Y; Zhao P; Niu Y; Liao M
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the metabolites produced by Colletotrichum gloeosporioides a fungus proposed for the Ambrosia artemisiifolia biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A.
    Masi M; Zonno MC; Cimmino A; Reveglia P; Berestetskiy A; Boari A; Vurro M; Evidente A
    Nat Prod Res; 2018 Jul; 32(13):1537-1547. PubMed ID: 29027474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.
    Cimmino A; Masi M; Evidente M; Superchi S; Evidente A
    Nat Prod Rep; 2015 Dec; 32(12):1629-53. PubMed ID: 26443032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbicidal Secondary Metabolites from Actinomycetes: Structure Diversity, Modes of Action, and Their Roles in the Development of Herbicides.
    Shi L; Wu Z; Zhang Y; Zhang Z; Fang W; Wang Y; Wan Z; Wang K; Ke S
    J Agric Food Chem; 2020 Jan; 68(1):17-32. PubMed ID: 31809036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study.
    Cimmino A; Andolfi A; Zonno MC; Boari A; Troise C; Motta A; Vurro M; Ash G; Evidente A
    J Agric Food Chem; 2013 Oct; 61(40):9645-9. PubMed ID: 24083323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide.
    Bo AB; Kim JD; Kim YS; Sin HT; Kim HJ; Khaitov B; Ko YK; Park KW; Choi JS
    PLoS One; 2019; 14(9):e0222933. PubMed ID: 31545849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract.
    Puig CG; Reigosa MJ; Valentão P; Andrade PB; Pedrol N
    PLoS One; 2018; 13(2):e0192872. PubMed ID: 29438430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album.
    Cimmino A; Masi M; Evidente M; Evidente A
    Nat Prod Commun; 2015 Jun; 10(6):1119-26. PubMed ID: 26197562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of hydroxyazolopyrimidines as herbicides; the generation of amitrole in planta.
    Clough JM; Dale RP; Elsdon B; Hawkes TR; Hogg BV; Howell A; Kloer DP; Lecoq K; McLachlan MM; Milnes PJ; O'Riordan TJ; Ranasinghe S; Shanahan SE; Sumner KD; Tayab S
    Pest Manag Sci; 2016 Dec; 72(12):2254-2272. PubMed ID: 26918632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herbicidal Characteristics and Structural Identification of the Potential Active Compounds from
    Kim HJ; Bo AB; Kim JD; Kim YS; Khaitov B; Ko YK; Cho KM; Jang KS; Park KW; Choi JS
    J Agric Food Chem; 2020 Dec; 68(52):15373-15380. PubMed ID: 33345538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kresoxim-methyl Derivatives: Synthesis and Herbicidal Activities of (Pyridinylphenoxymethylene)phenyl Methoxyiminoacetates.
    Cao YY; Mao DJ; Wang WW; Du XH
    J Agric Food Chem; 2017 Aug; 65(30):6114-6121. PubMed ID: 28683548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioherbicides: Current knowledge on weed control mechanism.
    Radhakrishnan R; Alqarawi AA; Abd Allah EF
    Ecotoxicol Environ Saf; 2018 Aug; 158():131-138. PubMed ID: 29677595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state of herbicides in herbicide-resistant crops.
    Green JM
    Pest Manag Sci; 2014 Sep; 70(9):1351-7. PubMed ID: 24446395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides.
    Travaini ML; Sosa GM; Ceccarelli EA; Walter H; Cantrell CL; Carrillo NJ; Dayan FE; Meepagala KM; Duke SO
    J Agric Food Chem; 2016 Dec; 64(50):9475-9487. PubMed ID: 27936681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc.
    Tuyen PT; Xuan TD; Tu Anh TT; Mai Van T; Ahmad A; Elzaawely AA; Khanh TD
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29414866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Synthesis of Novel 4-Hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one Derivatives for Use as Herbicides and Evaluation of Their Mode of Action.
    Lei K; Li P; Yang XF; Wang SB; Wang XK; Hua XW; Sun B; Ji LS; Xu XH
    J Agric Food Chem; 2019 Sep; 67(37):10489-10497. PubMed ID: 31452371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytotoxic Secondary Metabolites from Fungi.
    Xu D; Xue M; Shen Z; Jia X; Hou X; Lai D; Zhou L
    Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33917534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Purification of Potent Growth Inhibitors from
    Van TM; Xuan TD; Minh TN; Quan NV
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065174
    [No Abstract]   [Full Text] [Related]  

  • 19. Rice allelopathy in weed management - An integrated approach.
    Patni B; Chandra H; Mishra AP; Guru SK; Vitalini S; Iriti M
    Cell Mol Biol (Noisy-le-grand); 2018 Jun; 64(8):84-93. PubMed ID: 29981689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three Active Phytotoxic Compounds from the Leaves of
    Hossen K; Ozaki K; Teruya T; Kato-Noguchi H
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.