These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 31426316)
1. Proteomic Insights into Phycobilisome Degradation, A Selective and Tightly Controlled Process in The Fast-Growing Cyanobacterium Nagarajan A; Zhou M; Nguyen AY; Liberton M; Kedia K; Shi T; Piehowski P; Shukla A; Fillmore TL; Nicora C; Smith RD; Koppenaal DW; Jacobs JM; Pakrasi HB Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31426316 [TBL] [Abstract][Full Text] [Related]
2. Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. Levi M; Sendersky E; Schwarz R Plant J; 2018 Jun; 94(5):813-821. PubMed ID: 29575252 [TBL] [Abstract][Full Text] [Related]
3. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. Nguyen AY; Bricker WP; Zhang H; Weisz DA; Gross ML; Pakrasi HB Photosynth Res; 2017 Apr; 132(1):95-106. PubMed ID: 28078551 [TBL] [Abstract][Full Text] [Related]
4. The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex. Sendersky E; Kozer N; Levi M; Moizik M; Garini Y; Shav-Tal Y; Schwarz R Plant J; 2015 Sep; 83(5):845-52. PubMed ID: 26173720 [TBL] [Abstract][Full Text] [Related]
5. The proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the cyanobacterial light-harvesting complexes. Sendersky E; Kozer N; Levi M; Garini Y; Shav-Tal Y; Schwarz R Plant J; 2014 Jul; 79(1):118-26. PubMed ID: 24798071 [TBL] [Abstract][Full Text] [Related]
6. Functional Modification of Cyanobacterial Phycobiliprotein and Phycobilisomes through Bilin Metabolism Control. Sato M; Kawaguchi T; Maeda K; Watanabe M; Ikeuchi M; Narikawa R; Watanabe S ACS Synth Biol; 2024 Aug; 13(8):2391-2401. PubMed ID: 39038807 [TBL] [Abstract][Full Text] [Related]
7. NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Baier K; Lehmann H; Stephan DP; Lockau W Microbiology (Reading); 2004 Aug; 150(Pt 8):2739-2749. PubMed ID: 15289570 [TBL] [Abstract][Full Text] [Related]
8. A proteomic approach to the analysis of the components of the phycobilisomes from two cyanobacteria with complementary chromatic adaptation: Fremyella diplosiphon UTEX B590 and Tolypothrix PCC 7601. Pérez-Gómez B; Mendoza-Hernández G; Cabellos-Avelar T; Leyva-Castillo LE; Gutiérrez-Cirlos EB; Gómez-Lojero C Photosynth Res; 2012 Oct; 114(1):43-58. PubMed ID: 22965313 [TBL] [Abstract][Full Text] [Related]
9. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. Collier JL; Grossman AR EMBO J; 1994 Mar; 13(5):1039-47. PubMed ID: 8131738 [TBL] [Abstract][Full Text] [Related]
10. Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. Herrera-Salgado P; Leyva-Castillo LE; Ríos-Castro E; Gómez-Lojero C Photosynth Res; 2018 Oct; 138(1):39-56. PubMed ID: 29943359 [TBL] [Abstract][Full Text] [Related]
11. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. Miao D; Ding WL; Zhao BQ; Lu L; Xu QZ; Scheer H; Zhao KH Biochim Biophys Acta; 2016 Jun; 1857(6):688-94. PubMed ID: 27045046 [TBL] [Abstract][Full Text] [Related]
12. Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by A Clp protease complex. Baier A; Winkler W; Korte T; Lockau W; Karradt A J Biol Chem; 2014 Apr; 289(17):11755-11766. PubMed ID: 24610785 [TBL] [Abstract][Full Text] [Related]
13. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Dong C; Tang A; Zhao J; Mullineaux CW; Shen G; Bryant DA Biochim Biophys Acta; 2009 Sep; 1787(9):1122-8. PubMed ID: 19397890 [TBL] [Abstract][Full Text] [Related]
14. Antenna Modification in a Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973 Leads to Improved Efficiency and Carbon-Neutral Productivity. Sengupta A; Bandyopadhyay A; Schubert MG; Church GM; Pakrasi HB Microbiol Spectr; 2023 Aug; 11(4):e0050023. PubMed ID: 37318337 [TBL] [Abstract][Full Text] [Related]
15. NblA gene expression in Synechocystis PCC 6803 strains lacking DspA (Hik33) and a NblR-like protein. Zabulon G; Richaud C; Guidi-Rontani C; Thomas JC Curr Microbiol; 2007 Jan; 54(1):36-41. PubMed ID: 17171466 [TBL] [Abstract][Full Text] [Related]
16. Significant energy transfer from CpcG2-phycobilisomes to photosystem I in the cyanobacterium Synechococcus sp. PCC 7002 in the absence of ApcD-dependent state transitions. Deng G; Liu F; Liu X; Zhao J FEBS Lett; 2012 Jul; 586(16):2342-5. PubMed ID: 22659186 [TBL] [Abstract][Full Text] [Related]
17. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. Nadel O; Rozenberg A; Flores-Uribe J; Larom S; Schwarz R; Béjà O Environ Microbiol Rep; 2019 Dec; 11(6):848-854. PubMed ID: 31600852 [TBL] [Abstract][Full Text] [Related]
18. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. Calzadilla PI; Muzzopappa F; Sétif P; Kirilovsky D Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):488-498. PubMed ID: 31029593 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. Richaud C; Zabulon G; Joder A; Thomas JC J Bacteriol; 2001 May; 183(10):2989-94. PubMed ID: 11325925 [TBL] [Abstract][Full Text] [Related]