BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31426317)

  • 1. Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites.
    Kim M; Jung J; Jung S; Moon YH; Kim DH; Kim JH
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics.
    Tzounis L; Petousis M; Grammatikos S; Vidakis N
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites.
    Christ JF; Aliheidari N; Pötschke P; Ameli A
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30959995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Piezo-Resistance Composites Containing Thermoplastic Polyurethane/Hybrid Filler Using 3D Printing.
    Song K; Son H; Park S; Lee J; Jang J; Lee M; Choi HJ
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane.
    Kim NP
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates.
    Muñoz-Chilito J; Lara-Ramos JA; Marín L; Machuca-Martínez F; Correa-Aguirre JP; Hidalgo-Salazar MA; García-Navarro S; Roca-Blay L; Rodríguez LA; Mosquera-Vargas E; Diosa JE
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
    Fekiri C; Kim HC; Lee IH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-Influence of Nanofiller Content and 3D Printing Parameters on Mechanical Properties of Thermoplastic Polyurethane (TPU)/Halloysite Nanotube (HNT) Nanocomposites.
    Nugroho WT; Dong Y; Pramanik A; Zhang Z; Ramakrishna S
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoresistive Properties of 3D-Printed Polylactic Acid (PLA) Nanocomposites.
    Hashemi Sanatgar R; Cayla A; Guan J; Chen G; Nierstrasz V; Campagne C
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor.
    Zhuang Y; Guo Y; Li J; Jiang K; Yu Y; Zhang H; Liu D
    RSC Adv; 2020 Jun; 10(40):23644-23652. PubMed ID: 35517319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.
    He Y; Ming Y; Li W; Li Y; Wu M; Song J; Li X; Liu H
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed graphene/polyurethane wearable pressure sensor for motion fitness monitoring.
    Li Z; Li B; Chen B; Zhang J; Li Y
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34126609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Piezoresistive and Electrical Properties of Conductive Nanocomposite Based on Castor-Oil Polyurethane Filled with MWCNT and Carbon Black.
    Melo DS; Reis IC; Queiroz JC; Cena CR; Nahime BO; Malmonge JA; Silva MJ
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the Halloysite Nanotube (HNT) Addition on Selected Mechanical and Biological Properties of Thermoplastic Polyurethane.
    Mrówka M; Szymiczek M; Machoczek T; Pawlyta M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost and Highly Sensitive Pressure Sensor with Mold-Printed Multi-Walled Carbon Nanotubes Dispersed in Polydimethylsiloxane.
    de Rijk TM; Lang W
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the Application of MWCNTs/PLA Composite Material in the Manufacturing of Conductive Composite Products in 3D Printing.
    Luo J; Wang H; Zuo D; Ji A; Liu Y
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30513580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network.
    Yu R; Xia T; Wu B; Yuan J; Ma L; Cheng GJ; Liu F
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35291-35299. PubMed ID: 32640161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.
    Sang Z; Ke K; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36483-36492. PubMed ID: 30280558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets to Enhance the Functional Properties of SLS 3D-Printed Elastomeric Structures.
    Rollo G; Ronca A; Cerruti P; Gan XP; Fei G; Xia H; Gorokhov G; Bychanok D; Kuzhir P; Lavorgna M; Ambrosio L
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform.
    Kennedy ZC; Christ JF; Evans KA; Arey BW; Sweet LE; Warner MG; Erikson RL; Barrett CA
    Nanoscale; 2017 May; 9(17):5458-5466. PubMed ID: 28422253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.