BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31426370)

  • 1. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy.
    Pan CT; Francisco MD; Yen CK; Wang SY; Shiue YL
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive Real-Time Near Infrared (NIR) Vein Finder Imaging Device to Improve Peripheral Subcutaneous Vein Selection in Venipuncture for Clinical Laboratory Testing.
    Francisco MD; Chen WF; Pan CT; Lin MC; Wen ZH; Liao CF; Shiue YL
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.
    Juric S; Flis V; Debevc M; Holzinger A; Zalik B
    ScientificWorldJournal; 2014; 2014():365902. PubMed ID: 24883388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective evaluation of venous access difficulty and a near-infrared vein visualizer at four French haemophilia treatment centres.
    Guillon P; Makhloufi M; Baillie S; Roucoulet C; Dolimier E; Masquelier AM
    Haemophilia; 2015 Jan; 21(1):21-6. PubMed ID: 25335191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making the invisible visible: near-infrared spectroscopy and phlebotomy in children.
    Strehle EM
    Telemed J E Health; 2010 Oct; 16(8):889-93. PubMed ID: 20925568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does infrared visualization improve selection of venipuncture sites for indwelling needle at the forearm in second-year nursing students?
    Fukuroku K; Narita Y; Taneda Y; Kobayashi S; Gayle AA
    Nurse Educ Pract; 2016 May; 18():1-9. PubMed ID: 27235559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a near-infrared vein finder to define cortical veins and dural sinuses prior to dural opening.
    Goldschmidt E; Faraji AH; Jankowitz BT; Gardner P; Friedlander RM
    J Neurosurg; 2019 Aug; 133(4):1202-1209. PubMed ID: 31374554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary Study for Designing a Novel Vein-Visualizing Device.
    Kim D; Kim Y; Yoon S; Lee D
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28178227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation.
    Asrar M; Al-Habaibeh A; Houda M
    Appl Opt; 2016 Dec; 55(34):D67-D75. PubMed ID: 27958441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared system's efficiency for peripheral intravenous cannulation in a level III neonatal intensive care unit: a cross-sectional study.
    Ferrario S; Sorrentino G; Cavallaro G; Cortinovis I; Traina S; Muscolo S; Agosteo A; Santini G; Lagostina E; Mosca F; Plevani L
    Eur J Pediatr; 2022 Jul; 181(7):2747-2755. PubMed ID: 35482093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A device for improving the visual clarity and dimension of veins.
    Asrar M; Al-Habaibeh A; Shakmak B; Shaw SJ
    Br J Nurs; 2018 Oct; 27(19):S26-S36. PubMed ID: 30346822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Need help finding a vein?
    Krueger A
    Nursing; 2007 Jun; 37(6):39-41. PubMed ID: 17538434
    [No Abstract]   [Full Text] [Related]  

  • 13. An innovative approach to near-infrared spectroscopy using a standard mobile device and its clinical application in the real-time visualization of peripheral veins.
    Juric S; Zalik B
    BMC Med Inform Decis Mak; 2014 Nov; 14():100. PubMed ID: 25421099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing an LED array for an infrared illumination source using the near field for venous pattern detection.
    Vargas-Treviño M; Gutierrez-Gutiérrez J; Rodríguez-Lelis JM; López Apreza E
    Appl Opt; 2020 Mar; 59(9):2858-2865. PubMed ID: 32225835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of near-infrared light devices for pediatric peripheral intravenous cannulation: a systematic review and meta-analysis.
    Park JM; Kim MJ; Yim HW; Lee WC; Jeong H; Kim NJ
    Eur J Pediatr; 2016 Dec; 175(12):1975-1988. PubMed ID: 27785562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the Number of Phlebotomists in a Newly Established Sample Collection Center.
    Toomukuntla S; Vemula CV; Patil P; Somalwar SB; Rathod G; Prabhala S
    Cureus; 2023 Aug; 15(8):e43323. PubMed ID: 37700974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared imaging in intravenous cannulation in children: a cluster randomized clinical trial.
    Cuper NJ; de Graaff JC; Verdaasdonk RM; Kalkman CJ
    Pediatrics; 2013 Jan; 131(1):e191-7. PubMed ID: 23230072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can The Use Of Infrared Vein Finder Help Refine Venipuncture?
    Mansoor N; Warsi A
    J Pak Med Assoc; 2023 Oct; 73(10):2138. PubMed ID: 37876101
    [No Abstract]   [Full Text] [Related]  

  • 19. New biomedical devices that use near-infrared technology to assist with phlebotomy and vascular access.
    Yen K; Gorelick MH
    Pediatr Emerg Care; 2013 Mar; 29(3):383-5; quiz 386-7. PubMed ID: 23462399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance.
    Chen AI; Balter ML; Maguire TJ; Yarmush ML
    Med Image Comput Comput Assist Interv; 2016 Oct; 9902():388-396. PubMed ID: 27981261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.