BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31426437)

  • 1. Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance.
    Wiesinger M; März J; Kummer M; Schuler G; Dörrie J; Schuler-Thurner B; Schaft N
    Cancers (Basel); 2019 Aug; 11(8):. PubMed ID: 31426437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The siRNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma.
    Simon B; Harrer DC; Schuler-Thurner B; Schaft N; Schuler G; Dörrie J; Uslu U
    Exp Dermatol; 2018 Jul; 27(7):769-778. PubMed ID: 29704887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor.
    Krug C; Wiesinger M; Abken H; Schuler-Thurner B; Schuler G; Dörrie J; Schaft N
    Cancer Immunol Immunother; 2014 Oct; 63(10):999-1008. PubMed ID: 24938475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma.
    Simon B; Wiesinger M; März J; Wistuba-Hamprecht K; Weide B; Schuler-Thurner B; Schuler G; Dörrie J; Uslu U
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma.
    Harrer DC; Simon B; Fujii SI; Shimizu K; Uslu U; Schuler G; Gerer KF; Hoyer S; Dörrie J; Schaft N
    BMC Cancer; 2017 Aug; 17(1):551. PubMed ID: 28818060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSPG4-Specific CAR T Cells for High-Risk Childhood B Cell Precursor Leukemia.
    Harrer DC; Schuler G; Dörrie J; Schaft N
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSPG4-targeting CAR-macrophages inhibit melanoma growth.
    Greiner D; Xue Q; Waddell TQ; Kurudza E; Belote RL; Dotti G; Judson-Torres RL; Reeves MQ; Cheshier SH; Roh-Johnson M
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining CSPG4-CAR and CD20-CCR for treatment of metastatic melanoma.
    Teppert K; Winter N; Herbel V; Brandes C; Lennartz S; Engert F; Kaiser A; Schaser T; Lock D
    Front Immunol; 2023; 14():1178060. PubMed ID: 37901209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities-Merits and Challenges.
    Harrer DC; Dörrie J; Schaft N
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering.
    Oberschmidt O; Morgan M; Huppert V; Kessler J; Gardlowski T; Matthies N; Aleksandrova K; Arseniev L; Schambach A; Koehl U; Kloess S
    Hum Gene Ther Methods; 2019 Jun; 30(3):102-120. PubMed ID: 30997855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decitabine-Mediated Upregulation of CSPG4 in Ovarian Carcinoma Cells Enables Targeting by CSPG4-Specific CAR-T Cells.
    Harrer DC; Schenkel C; Berking C; Herr W; Abken H; Dörrie J; Schaft N
    Cancers (Basel); 2022 Oct; 14(20):. PubMed ID: 36291817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells.
    Beard RE; Zheng Z; Lagisetty KH; Burns WR; Tran E; Hewitt SM; Abate-Daga D; Rosati SF; Fine HA; Ferrone S; Rosenberg SA; Morgan RA
    J Immunother Cancer; 2014; 2():25. PubMed ID: 25197555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.
    Klöß S; Oberschmidt O; Morgan M; Dahlke J; Arseniev L; Huppert V; Granzin M; Gardlowski T; Matthies N; Soltenborn S; Schambach A; Koehl U
    Hum Gene Ther; 2017 Oct; 28(10):897-913. PubMed ID: 28810809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondroitin sulfate proteoglycan 4 expression in chondrosarcoma: A potential target for antibody-based immunotherapy.
    Nota SPFT; Osei-Hwedieh DO; Drum DL; Wang X; Sabbatino F; Ferrone S; Schwab JH
    Front Oncol; 2022; 12():939166. PubMed ID: 36110930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins.
    Sauerer T; Albrecht L; Sievers NM; Gerer KF; Hoyer S; Dörrie J; Schaft N
    Methods Mol Biol; 2024; 2786():219-235. PubMed ID: 38814397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype.
    Gargett T; Truong N; Ebert LM; Yu W; Brown MP
    Cytotherapy; 2019 Jun; 21(6):593-602. PubMed ID: 30975603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors.
    Wang Y; Geldres C; Ferrone S; Dotti G
    Expert Opin Ther Targets; 2015; 19(10):1339-50. PubMed ID: 26190756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized DNA electroporation for primary human T cell engineering.
    Zhang Z; Qiu S; Zhang X; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):4. PubMed ID: 29378552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells.
    Wang L; Gong W; Wang S; Neuber B; Sellner L; Schubert ML; Hückelhoven-Krauss A; Kunz A; Gern U; Michels B; Hinkelbein M; Mechler S; Richter P; Müller-Tidow C; Schmitt M; Schmitt A
    Cytotherapy; 2019 May; 21(5):566-578. PubMed ID: 30910382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arming T Cells with a gp100-Specific TCR and a CSPG4-Specific CAR Using Combined DNA- and RNA-Based Receptor Transfer.
    Simon B; Harrer DC; Schuler-Thurner B; Schuler G; Uslu U
    Cancers (Basel); 2019 May; 11(5):. PubMed ID: 31137488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.