These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 31426522)

  • 1. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era.
    Shelake RM; Pramanik D; Kim JY
    Microorganisms; 2019 Aug; 7(8):. PubMed ID: 31426522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR-Cas9 in plant-plant growth-promoting rhizobacteria interactions for next Green Revolution.
    Singh S; Ramakrishna W
    3 Biotech; 2021 Dec; 11(12):492. PubMed ID: 34840925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Plant-microbe Interactions in CRISPR/CAS9 Era: Indeed a Sprinting Start in Marathon.
    Prabhukarthikeyan SR; Parameswaran C; Keerthana U; Teli B; Jag PTK; Cayalvizhi B; Panneerselvam P; Senapati A; Nagendran K; Kumari S; Yadav MK; Aravindan S; Sanghamitra S
    Curr Genomics; 2020 Sep; 21(6):429-443. PubMed ID: 33093805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current technological interventions and applications of CRISPR/Cas for crop improvement.
    Shah P; Magar ND; Barbadikar KM
    Mol Biol Rep; 2022 Jun; 49(6):5751-5770. PubMed ID: 34807378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Viruses: From Targets to Tools for CRISPR.
    Varanda CM; Félix MDR; Campos MD; Patanita M; Materatski P
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33478128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications.
    Aman Mohammadi M; Maximiano MR; Hosseini SM; Franco OL
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):483-497. PubMed ID: 36707422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture.
    Khanna K; Ohri P; Bhardwaj R
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118049-118064. PubMed ID: 36973619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture.
    Diwan D; Rashid MM; Vaishnav A
    Microbiol Res; 2022 Dec; 265():127180. PubMed ID: 36126490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adoption of CRISPR-Cas for crop production: present status and future prospects.
    Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO
    PeerJ; 2024; 12():e17402. PubMed ID: 38860212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for the amelioration of adverse effects of drought stress on crop plants.
    Dubey A; Kumar A; Malla MA; Chowdhary K; Singh G; Ravikanth G; Harish ; Sharma S; Saati-Santamaria Z; Menéndez E; Dames JF
    Front Biosci (Landmark Ed); 2021 Oct; 26(10):928-947. PubMed ID: 34719216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering disease resistant plants through CRISPR-Cas9 technology.
    Tyagi S; Kumar R; Kumar V; Won SY; Shukla P
    GM Crops Food; 2021 Jan; 12(1):125-144. PubMed ID: 33079628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles.
    Shelake RM; Jadhav AM; Bhosale PB; Kim JY
    Plant Physiol Biochem; 2023 Oct; 203():108070. PubMed ID: 37816270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The era of editing plant genomes using CRISPR/Cas: A critical appraisal.
    Bhat MA; Bhat MA; Kumar V; Wani IA; Bashir H; Shah AA; Rahman S; Jan AT
    J Biotechnol; 2020 Dec; 324():34-60. PubMed ID: 32980369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational management of the plant microbiome for the Second Green Revolution.
    Li X; Zheng X; Yadav N; Saha S; Salama ES; Li X; Wang L; Jeon BH
    Plant Commun; 2024 Apr; 5(4):100812. PubMed ID: 38213028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security.
    Sharma SK; Gupta OP; Pathaw N; Sharma D; Maibam A; Sharma P; Sanasam J; Karkute SG; Kumar S; Bhattacharjee B
    Front Nutr; 2021; 8():751512. PubMed ID: 34977113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives.
    Kumawat KC; Razdan N; Saharan K
    Microbiol Res; 2022 Jan; 254():126901. PubMed ID: 34700186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.