These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 31426522)

  • 21. Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: achievements and perspectives.
    Selma S; Ceulemans E; Goossens A; Lacchini E
    Curr Opin Biotechnol; 2023 Feb; 79():102856. PubMed ID: 36473330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR gene editing to improve crop resistance to parasitic plants.
    Jhu MY; Ellison EE; Sinha NR
    Front Genome Ed; 2023; 5():1289416. PubMed ID: 37965302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein System for Resistance Against Plant Viruses: Applications and Perspectives.
    Silva FDA; Fontes EPB
    Front Plant Sci; 2022; 13():904829. PubMed ID: 35693174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration.
    Jagadesh M; Dash M; Kumari A; Singh SK; Verma KK; Kumar P; Bhatt R; Sharma SK
    Microbiol Res; 2024 Aug; 285():127764. PubMed ID: 38805978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.
    Khatodia S; Bhatotia K; Passricha N; Khurana SM; Tuteja N
    Front Plant Sci; 2016; 7():506. PubMed ID: 27148329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook.
    Ahmar S; Gill RA; Jung KH; Faheem A; Qasim MU; Mubeen M; Zhou W
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32276445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants.
    Agunbiade VF; Babalola OO
    Bioinform Biol Insights; 2024; 18():11779322241233442. PubMed ID: 38464334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices.
    Das PP; Singh KR; Nagpure G; Mansoori A; Singh RP; Ghazi IA; Kumar A; Singh J
    Environ Res; 2022 Nov; 214(Pt 1):113821. PubMed ID: 35810815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing.
    Sattar MN; Iqbal Z; Tahir MN; Shahid MS; Khurshid M; Al-Khateeb AA; Al-Khateeb SA
    Front Plant Sci; 2017; 8():1469. PubMed ID: 28878801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Era of CRISPR/ Cas9 Mediated Plant Genome Editing.
    Khurshid H; Jan SA; Shinwari ZK; Jamal M; Shah SH
    Curr Issues Mol Biol; 2018; 26():47-54. PubMed ID: 28879855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crop bioengineering via gene editing: reshaping the future of agriculture.
    Atia M; Jiang W; Sedeek K; Butt H; Mahfouz M
    Plant Cell Rep; 2024 Mar; 43(4):98. PubMed ID: 38494539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective.
    Shahid MS; Sattar MN; Iqbal Z; Raza A; Al-Sadi AM
    Front Microbiol; 2020; 11():609376. PubMed ID: 33584572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome edited wheat- current advances for the second green revolution.
    Awan MJA; Pervaiz K; Rasheed A; Amin I; Saeed NA; Dhugga KS; Mansoor S
    Biotechnol Adv; 2022 Nov; 60():108006. PubMed ID: 35732256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants.
    Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S
    Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Advances in CRISPR-Cas-mediated genome editing system in plants].
    Wang C; Wang K
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1712-1722. PubMed ID: 29082719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective.
    Zhang D; Hussain A; Manghwar H; Xie K; Xie S; Zhao S; Larkin RM; Qing P; Jin S; Ding F
    Plant Biotechnol J; 2020 Aug; 18(8):1651-1669. PubMed ID: 32271968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of genome editing in plant reproductive biology: recent advances and challenges.
    Gawande ND; Bhalla H; Watts A; Shelake RM; Sankaranarayanan S
    Plant Reprod; 2024 Dec; 37(4):441-462. PubMed ID: 38954018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.