These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 31426577)
1. Medical Robotics in Bone Fracture Reduction Surgery: A Review. Bai L; Yang J; Chen X; Sun Y; Li X Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426577 [TBL] [Abstract][Full Text] [Related]
2. Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review. Zhao JX; Li C; Ren H; Hao M; Zhang LC; Tang PF Ann Biomed Eng; 2020 Jan; 48(1):203-224. PubMed ID: 31359265 [TBL] [Abstract][Full Text] [Related]
3. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. Dagnino G; Georgilas I; Köhler P; Morad S; Atkins R; Dogramadzi S Int J Comput Assist Radiol Surg; 2016 Oct; 11(10):1831-43. PubMed ID: 27236651 [TBL] [Abstract][Full Text] [Related]
4. [Development and clinical application of robot-assisted technology in traumatic orthopedics]. Zhu Z; Zheng G; Zhang C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Aug; 36(8):915-922. PubMed ID: 35979779 [TBL] [Abstract][Full Text] [Related]
5. A removable hybrid robot system for long bone fracture reduction. Wang T; Li C; Hu L; Tang P; Zhang L; Du H; Luan S; Wang L; Tan Y; Peng C Biomed Mater Eng; 2014; 24(1):501-9. PubMed ID: 24211933 [TBL] [Abstract][Full Text] [Related]
6. A biplanar robot navigation system for the distal locking of intramedullary nails. Lei H; Sheng L; Manyi W; Junqiang W; Wenyong L Int J Med Robot; 2010 Mar; 6(1):61-5. PubMed ID: 20014152 [TBL] [Abstract][Full Text] [Related]
7. Human-robot-robot cooperative control using positioning robot and 1-DOF traction device for robot-assisted fracture reduction system. Kim WY; Joung S; Park H; Park JO; Ko SY Proc Inst Mech Eng H; 2022 May; 236(5):697-710. PubMed ID: 35234094 [TBL] [Abstract][Full Text] [Related]
8. Development of a robotic navigation and fracture fixation system. Fuechtmeier B; Egersdoerfer S; Tuma G; Monkman GJ; Nerlich M Stud Health Technol Inform; 2003; 97():43-9. PubMed ID: 15537229 [TBL] [Abstract][Full Text] [Related]
9. Using the Starr Frame and Da Vinci surgery system for pelvic fracture and sacral nerve injury. Peng Y; Zhang W; Zhang G; Wang X; Zhang S; Ma X; Tang P; Zhang L J Orthop Surg Res; 2019 Jan; 14(1):29. PubMed ID: 30683121 [TBL] [Abstract][Full Text] [Related]
10. [Orthopedic robot based on 5G technology for remote navigation of percutaneous screw fixation in pelvic and acetabular fractures]. Zhao B; Li J; Zhao C; Su Y; Han W; Wu X; Jiang X; Wang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Aug; 36(8):923-928. PubMed ID: 35979780 [TBL] [Abstract][Full Text] [Related]
11. Robotic navigation during spine surgery: an update of literature. Zhang Q; Han XG; Fan MX; Zhao JW; Lang Z; Jiang JL; He D; Liu B; Tian W Expert Rev Med Devices; 2023 Jun; 20(6):427-432. PubMed ID: 37027325 [TBL] [Abstract][Full Text] [Related]
12. Robot-patient registration for optical tracker-free robotic fracture reduction surgery. Ha HG; Han G; Lee S; Nam K; Joung S; Park I; Hong J Comput Methods Programs Biomed; 2023 Jan; 228():107239. PubMed ID: 36410266 [TBL] [Abstract][Full Text] [Related]
13. [A clinical study of HoloSight Orthopaedic Trauma Surgery Robot-assisted infra-acetabular screw placement for acetabular fractures]. Cao W; Wang Z; Li J; Qi L; Qi H; He P; He J; Liu H; Yi C; Chen H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):696-702. PubMed ID: 38918190 [TBL] [Abstract][Full Text] [Related]
14. Does robot-assisted percutaneous hollow screw placement combined with tarsal sinus incision reduction in the treatment of calcaneal fracture perform better at a minimum two year follow-up compared with traditional surgical reduction and fixation? Yuan X; Tan K; Hu J; Zhang B; Zhang H Int Orthop; 2023 Jun; 47(6):1575-1581. PubMed ID: 36933037 [TBL] [Abstract][Full Text] [Related]
15. [A comparative study on internal fixation of calcaneal fractures assisted by robot and traditional open reduction internal fixation]. Yuan X; Zhang B; Hu J; Lu B; Tang Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jun; 35(6):729-733. PubMed ID: 34142500 [TBL] [Abstract][Full Text] [Related]
16. A robot assisted hip fracture reduction with a navigation system. Joung S; Kamon H; Liao H; Iwaki J; Nakazawa T; Mitsuishi M; Nakajima Y; Koyama T; Sugano N; Maeda Y; Bessho M; Ohashi S; Matsumoto T; Ohnishi I; Sakuma I Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):501-8. PubMed ID: 18982642 [TBL] [Abstract][Full Text] [Related]
17. Robot Navigation System Assisted PFNA Fixation of Femoral Intertrochanteric Fractures in the Elderly: A Retrospective Clinical Study. Qi H; Li Z; Ma T; Jiang Y; Ren C; Xu Y; Huang Q; Zhang K; Lu Y; Li M Clin Interv Aging; 2024; 19():11-19. PubMed ID: 38204959 [TBL] [Abstract][Full Text] [Related]
18. Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures. Zhao C; Cao Q; Sun X; Wu X; Zhu G; Wang Y Injury; 2023 Feb; 54(2):604-614. PubMed ID: 36371315 [TBL] [Abstract][Full Text] [Related]
19. Robot-assisted vs traditional percutaneous freehand for the scaphoid fracture treatment: a retrospective study. Xiao C; Wei D; Zhu Z; Chen H; Zhou W; Tang X; Yuan J; Wang Y; Hu J Int Orthop; 2023 Mar; 47(3):839-845. PubMed ID: 35922521 [TBL] [Abstract][Full Text] [Related]
20. Open core control software for surgical robots. Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]