These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31426986)

  • 21. Synergy between Isomorphous Acid and Basic Metal-Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures.
    Dong XY; Wang JH; Liu SS; Han Z; Tang QJ; Li FF; Zang SQ
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38209-38216. PubMed ID: 30360073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells.
    Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.
    Liu H; Gong C; Wang J; Liu X; Liu H; Cheng F; Wang G; Zheng G; Qin C; Wen S
    Carbohydr Polym; 2016 Jan; 136():1379-85. PubMed ID: 26572483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.
    Pandey RP; Shukla G; Manohar M; Shahi VK
    Adv Colloid Interface Sci; 2017 Feb; 240():15-30. PubMed ID: 28024645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading.
    Li Z; He G; Zhang B; Cao Y; Wu H; Jiang Z; Tiantian Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9799-807. PubMed ID: 24892655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.
    Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B
    J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.
    Xiao Y; Xiang Y; Xiu R; Lu S
    Carbohydr Polym; 2013 Oct; 98(1):233-40. PubMed ID: 23987340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM.
    Gahlot S; Kulshrestha V
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):264-72. PubMed ID: 25513706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells.
    Hren M; Makuc D; Plavec J; Roschger M; Hacker V; Genorio B; Božič M; Gorgieva S
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications - A Review.
    Esmaeili N; Gray EM; Webb CJ
    Chemphyschem; 2019 Aug; 20(16):2016-2053. PubMed ID: 31334917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal.
    Zhang J; Ge Y; Li Z; Wang Y
    J Environ Manage; 2020 Feb; 256():109969. PubMed ID: 31989986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TiO2/bi A-SPAES(Ds 1.0) composite membranes for proton exchange membrane in direct methanol fuel cell (DMFC).
    Zhang N; Zhong C; Xie B; Liu H; Wang X
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7286-92. PubMed ID: 25924404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Oxidative Stability by Embedded Cerium into Graphene Oxide Nanosheets for Proton Exchange Membrane Fuel Cell Application.
    Sharma PP; Tinh VDC; Kim D
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33800616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New nanocomposite hybrid inorganic-organic proton-conducting membranes based on functionalized silica and PTFE.
    Di Noto V; Piga M; Giffin GA; Negro E; Furlan C; Vezzù K
    ChemSusChem; 2012 Sep; 5(9):1758-66. PubMed ID: 22807005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency.
    Sigwadi R; Mokrani T; Msomi P; Nemavhola F
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The proton conductivity and mechanical properties of Nafion®/ ZrP nanocomposite membrane.
    Sigwadi R; Dhlamini MS; Mokrani T; Ṋemavhola F; Nonjola PF; Msomi PF
    Heliyon; 2019 Aug; 5(8):e02240. PubMed ID: 31485507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.
    Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyoxometalate-Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications.
    Zhai L; Li H
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31547150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane.
    Ma L; Li J; Xiong J; Xu G; Liu Z; Cai W
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesoporous Silica Nanospheres Impregnated with 12-Phosphotungstic Acid as Inorganic Filler of Nafion Membrane for Proton Exchange Membrane Fuel Cells.
    Zhang X; Ai T; Huang Y; Zhao Y; Han L; Lu J
    J Nanosci Nanotechnol; 2019 Jan; 19(1):98-104. PubMed ID: 30327007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.