BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31427003)

  • 21. Chitosan-based coagulating agents for treatment of cheddar cheese whey.
    Savant VD; Torres JA
    Biotechnol Prog; 2000; 16(6):1091-7. PubMed ID: 11101339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers.
    Biesheuvel PM; Cohen Stuart MA
    Langmuir; 2004 Mar; 20(7):2785-91. PubMed ID: 15835153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of polyelectrolyte complex particles from self-complexation of N-sulfated chitosan.
    Schatz C; Bionaz A; Lucas JM; Pichot C; Viton C; Domard A; Delair T
    Biomacromolecules; 2005; 6(3):1642-7. PubMed ID: 15877389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides.
    Peinado I; Lesmes U; Andrés A; McClements JD
    Langmuir; 2010 Jun; 26(12):9827-34. PubMed ID: 20229991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and stability of electrostatic complexes formed between scallop female gonad protein isolates and sodium alginate: Influence of pH, total concentration, blend ratio, and ionic strength.
    Han JR; Yan JN; Du YN; Wu HT; Zhu BW
    J Food Sci; 2022 Jun; 87(6):2504-2514. PubMed ID: 35603811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions.
    Yang Y; Anvari M; Pan CH; Chung D
    Food Chem; 2012 Nov; 135(2):555-61. PubMed ID: 22868128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical stability and functional properties of selenium nanoparticles stabilized by chitosan, carrageenan, and gum Arabic.
    Song X; Chen Y; Sun H; Liu X; Leng X
    Carbohydr Polym; 2021 Mar; 255():117379. PubMed ID: 33436210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration.
    Schröder P; Cord-Landwehr S; Schönhoff M; Cramer C
    Biomacromolecules; 2023 Mar; 24(3):1194-1208. PubMed ID: 36779888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS
    Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soluble complexes between chenopodins and alginate/chitosan: Intermolecular interactions and structural-physicochemical properties.
    Romo I; Abugoch L; Tapia C
    Carbohydr Polym; 2020 Jan; 227():115334. PubMed ID: 31590854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of psyllium and gum Arabic biopolymers on the survival rate and storage stability in yogurt of
    Nami Y; Haghshenas B; Yari Khosroushahi A
    Food Sci Nutr; 2017 May; 5(3):554-563. PubMed ID: 28572941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte-polyampholyte solutions.
    Pathak J; Rawat K; Bohidar HB
    Int J Biol Macromol; 2014 Feb; 63():29-37. PubMed ID: 24161686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex coacervation of scallop (Patinopecten yessoensis) male gonad hydrolysates and κ-carrageenan: Effect of NaCl and KCl.
    Yan JN; Nie B; Jiang XY; Han JR; Du YN; Wu HT
    Food Res Int; 2020 Nov; 137():109659. PubMed ID: 33233238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycinin-gum arabic complex formation: Turbidity measurement and charge neutralization analysis.
    Dong D; Hua Y
    Food Res Int; 2016 Nov; 89(Pt 1):709-715. PubMed ID: 28460969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum arabic complexes.
    Liu S; Low NH; Nickerson MT
    J Agric Food Chem; 2009 Feb; 57(4):1521-6. PubMed ID: 19170635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex coacervation of soybean protein isolate and chitosan.
    Huang GQ; Sun YT; Xiao JX; Yang J
    Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.
    Covis R; Vives T; Gaillard C; Benoit M; Benvegnu T
    Carbohydr Polym; 2015 May; 121():436-48. PubMed ID: 25659719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism.
    Huang GQ; Liu LN; Han XN; Xiao JX
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():423-429. PubMed ID: 28629036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polysaccharide type and concentration affect nanocomplex formation in associative mixture with β-lactoglobulin.
    Hosseini SM; Emam-Djomeh Z; Negahdarifar M; Sepeidnameh M; Razavi SH; Van der Meeren P
    Int J Biol Macromol; 2016 Dec; 93(Pt A):724-730. PubMed ID: 27637451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.