BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31427015)

  • 1. 4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation.
    Wintgens V; Guigner JM; Miskolczy Z; Amiel C; Biczók L
    Carbohydr Polym; 2019 Nov; 223():115071. PubMed ID: 31427015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerable change of fluorescence properties upon multiple binding of coralyne to 4-sulfonatocalixarenes.
    Megyesi M; Biczók L
    J Phys Chem B; 2010 Mar; 114(8):2814-9. PubMed ID: 20136067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of ibuprofen and bovine serum albumin-dextran conjugates leading to effective loading of the drug.
    Li J; Yao P
    Langmuir; 2009 Jun; 25(11):6385-91. PubMed ID: 19371045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging.
    Chen J; Liu Y; Mao D; Ma D
    Chem Commun (Camb); 2017 Aug; 53(62):8739-8742. PubMed ID: 28726866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery.
    Ma S; Zhou J; Wali AR; He Y; Xu X; Tang JZ; Gu Z
    J Mater Sci Mater Med; 2015 Aug; 26(8):219. PubMed ID: 26238777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin.
    Chuah AM; Kuroiwa T; Ichikawa S; Kobayashi I; Nakajima M
    J Food Sci; 2009; 74(1):N1-8. PubMed ID: 19200109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Supramolecular Vesicle Based on the Complexation of p-Sulfonatocalixarene with Protamine and its Trypsin-Triggered Controllable-Release Properties.
    Wang K; Guo DS; Zhao MY; Liu Y
    Chemistry; 2016 Jan; 22(4):1475-83. PubMed ID: 24595914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochromism of a merocyanine dye bound to sulfonatocalixarenes: effect of pH and the size of macrocycle on the kinetics.
    Miskolczy Z; Biczók L
    J Phys Chem B; 2013 Jan; 117(2):648-53. PubMed ID: 23289744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy.
    T S A; V CS; F S; Thomas JP
    Int J Biol Macromol; 2019 Aug; 135():776-789. PubMed ID: 31158423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus-sized DNA nanoparticles for gene delivery based on micelles of cationic calixarenes.
    Rodik RV; Klymchenko AS; Jain N; Miroshnichenko SI; Richert L; Kalchenko VI; Mély Y
    Chemistry; 2011 May; 17(20):5526-38. PubMed ID: 21503994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrakis(methylimidazole) and tetrakis(methylimidazolium) calix[4]arenes: competitive anion binding and deprotonation.
    Bullough EK; Kilner CA; Little MA; Willans CE
    Org Biomol Chem; 2012 Apr; 10(14):2824-9. PubMed ID: 22383110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine tuning the production of nanosized beta-carotene particles using spinning disk processing.
    Anantachoke N; Makha M; Raston CL; Reutrakul V; Smith NC; Saunders M
    J Am Chem Soc; 2006 Oct; 128(42):13847-53. PubMed ID: 17044713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dextran Nanoparticle Synthesis and Properties.
    Wasiak I; Kulikowska A; Janczewska M; Michalak M; Cymerman IA; Nagalski A; Kallinger P; Szymanski WW; Ciach T
    PLoS One; 2016; 11(1):e0146237. PubMed ID: 26752182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of pH-Sensitive Dextran Nanoparticle for Doxorubicin Delivery.
    Wang B; Liu P; Shi B; Gao J; Gong P
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2613-8. PubMed ID: 26353472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of nanoparticles based on dextran-drug conjugates.
    Hornig S; Bunjes H; Heinze T
    J Colloid Interface Sci; 2009 Oct; 338(1):56-62. PubMed ID: 19635622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatically synthesized dextran nanoparticles and their use as carriers for nutraceuticals.
    Semyonov D; Ramon O; Shoham Y; Shimoni E
    Food Funct; 2014 Oct; 5(10):2463-74. PubMed ID: 25110170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems.
    Aumelas A; Serrero A; Durand A; Dellacherie E; Leonard M
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):74-80. PubMed ID: 17560095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphoteric calix[8]arene-based complex for pH-triggered drug delivery.
    Xue Y; Guan Y; Zheng A; Xiao H
    Colloids Surf B Biointerfaces; 2013 Jan; 101():55-60. PubMed ID: 22796772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.
    Hu Y; He L; Ding J; Sun D; Chen L; Chen X
    Carbohydr Polym; 2016 Jun; 144():223-9. PubMed ID: 27083812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of aqueous ternary nanomatrix films: A novel 'green' strategy for the delivery of poorly soluble drugs.
    Kola-Mustapha AT; Armitage D; Abioye AO
    Int J Pharm; 2016 Dec; 515(1-2):616-631. PubMed ID: 27825861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.