These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31427015)

  • 41. Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems.
    Wang H; Dai T; Zhou S; Huang X; Li S; Sun K; Zhou G; Dou H
    Sci Rep; 2017 Jan; 7():40011. PubMed ID: 28071743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spontaneous Self-Assembly of Polymeric Nanoparticles in Aqueous Media: New Insights From Microfluidics, In Situ Size Measurements, and Individual Particle Tracking.
    Li X; Salzano G; Zhang J; Gref R
    J Pharm Sci; 2017 Jan; 106(1):395-401. PubMed ID: 27816265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous solubilization of furosemide by supramolecular complexation with 4-sulphonic calix[n]arenes.
    Yang W; de Villiers MM
    J Pharm Pharmacol; 2004 Jun; 56(6):703-8. PubMed ID: 15231034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functionalizing biodegradable dextran scaffolds using living radical polymerization: new versatile nanoparticles for the delivery of therapeutic molecules.
    Duong HT; Hughes F; Sagnella S; Kavallaris M; Macmillan A; Whan R; Hook J; Davis TP; Boyer C
    Mol Pharm; 2012 Nov; 9(11):3046-61. PubMed ID: 23078353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Survey on the complexation character of p-sulfonatocalix[n]arenes and Caffeic acid.
    Chao J; Liu Y; Zhang Y; Wang Y; Zhao W; Zhang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():152-9. PubMed ID: 24858356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stimuli-responsive supramolecular nanostructure from amphiphilic calix[4]arene and its three-dimensional dendritic silver nanostructure.
    Cho EJ; Kang JK; Han WS; Jung JH
    Langmuir; 2008 May; 24(10):5229-32. PubMed ID: 18407680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery.
    Li L; Bai Z; Levkin PA
    Biomaterials; 2013 Nov; 34(33):8504-10. PubMed ID: 23932249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.
    Zhang L; Zhu D; Dong X; Sun H; Song C; Wang C; Kong D
    Int J Nanomedicine; 2015; 10():2101-14. PubMed ID: 25844039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Novel Polymer-Lipid Hybrid Nanoparticle for the Improvement of Topotecan Hydrochloride Physicochemical Properties.
    Silva EJ; Souza LG; Silva LAD; Taveira SF; Guilger RC; Liao LM; Queiroz Junior LHK; Santana MJ; Marreto RN
    Curr Drug Deliv; 2018; 15(7):979-986. PubMed ID: 29243576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery.
    Hao S; Wang Y; Wang B; Deng J; Liu X; Liu J
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4562-7. PubMed ID: 24094160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel glycidyl methacrylated dextran/gelatin nanoparticles loaded with basic fibroblast growth factor: formulation and characteristics.
    Gu C; Zheng R; Yang Z; Wen A; Wu H; Zhang H; Yi D
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1419-29. PubMed ID: 19929201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetite ferrofluids stabilized by sulfonato-calixarenes.
    Chin SF; Makha M; Raston CL; Saunders M
    Chem Commun (Camb); 2007 May; (19):1948-50. PubMed ID: 17695239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery.
    Thambi T; You DG; Han HS; Deepagan VG; Jeon SM; Suh YD; Choi KY; Kim K; Kwon IC; Yi GR; Lee JY; Lee DS; Park JH
    Adv Healthc Mater; 2014 Nov; 3(11):1829-38. PubMed ID: 24753360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine.
    Tseng WC; Jong CM
    Biomacromolecules; 2003; 4(5):1277-84. PubMed ID: 12959595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles.
    Porfire AS; Zabaleta V; Gamazo C; Leucuta SE; Irache JM
    Int J Pharm; 2010 May; 390(1):37-44. PubMed ID: 19712734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release.
    Sun L; Zhang X; Zheng C; Wu Z; Li C
    J Phys Chem B; 2013 Apr; 117(14):3852-60. PubMed ID: 23517533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.
    Sun TM; Du JZ; Yan LF; Mao HQ; Wang J
    Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.
    Qiao ZY; Ji R; Huang XN; Du FS; Zhang R; Liang DH; Li ZC
    Biomacromolecules; 2013 May; 14(5):1555-63. PubMed ID: 23570500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system.
    Jafarzadeh-Holagh S; Hashemi-Najafabadi S; Shaki H; Vasheghani-Farahani E
    J Colloid Interface Sci; 2018 Aug; 523():179-190. PubMed ID: 29621645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.