BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31427026)

  • 1. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation.
    Yeo M; Kim G
    Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal myotube formation enhanced through fibrillated collagen nanofibers coated on a 3D-printed polycaprolactone surface.
    Chae S; Lee J; Kim G
    Colloids Surf B Biointerfaces; 2019 Sep; 181():408-415. PubMed ID: 31174076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing C2C12 myoblast differentiation using polycaprolactone-polypyrrole copolymer scaffolds.
    Browe D; Freeman J
    J Biomed Mater Res A; 2019 Jan; 107(1):220-231. PubMed ID: 30378775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An
    Yeo M; Chae S; Kim G
    Theranostics; 2021; 11(7):3331-3347. PubMed ID: 33537090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.
    Kim MS; Kim G
    Carbohydr Polym; 2014 Dec; 114():213-221. PubMed ID: 25263884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.
    Wang L; Wu Y; Guo B; Ma PX
    ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering.
    Ko YM; Choi DY; Jung SC; Kim BH
    J Nanosci Nanotechnol; 2015 Jan; 15(1):192-5. PubMed ID: 26328328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications.
    Song J; Gao H; Zhu G; Cao X; Shi X; Wang Y
    Biofabrication; 2016 Aug; 8(3):035009. PubMed ID: 27563025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide-
    Lee H; Kim W; Lee J; Yoo JJ; Kim GH; Lee SJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39449-39458. PubMed ID: 31584255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
    Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts.
    Yang GH; Jeon H; Kim G
    Biofabrication; 2017 Jun; 9(2):025035. PubMed ID: 28589919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.