BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31427068)

  • 1. Surface and Bulk Stresses Drive Morphological Changes in Fibrous Microtissues.
    Mailand E; Li B; Eyckmans J; Bouklas N; Sakar MS
    Biophys J; 2019 Sep; 117(5):975-986. PubMed ID: 31427068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for 3D deformation and reconstruction of contractile microtissues.
    Kim J; Mailand E; Ang I; Sakar MS; Bouklas N
    Soft Matter; 2021 Nov; 17(45):10198-10209. PubMed ID: 33118554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
    Ramade A; Legant WR; Picart C; Chen CS; Boudou T
    Methods Cell Biol; 2014; 121():191-211. PubMed ID: 24560511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening.
    Zhao R; Chen CS; Reich DH
    Biomaterials; 2014 Jun; 35(19):5056-64. PubMed ID: 24630092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell-Matrix Interactions.
    Bose P; Huang CY; Eyckmans J; Chen CS; Reich DH
    Methods Mol Biol; 2018; 1722():303-328. PubMed ID: 29264812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks.
    Farran AJ; Teller SS; Jha AK; Jiao T; Hule RA; Clifton RJ; Pochan DP; Duncan RL; Jia X
    Tissue Eng Part A; 2010 Apr; 16(4):1247-61. PubMed ID: 20064012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
    Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L
    Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necking and failure of constrained 3D microtissues induced by cellular tension.
    Wang H; Svoronos AA; Boudou T; Sakar MS; Schell JY; Morgan JR; Chen CS; Shenoy VB
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20923-8. PubMed ID: 24324149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues.
    Legant WR; Pathak A; Yang MT; Deshpande VS; McMeeking RM; Chen CS
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10097-102. PubMed ID: 19541627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.
    Zhang X; Meng Z; Ma J; Shi Y; Xu H; Lykkemark S; Qin J
    Small; 2015 Aug; 11(30):3666-75. PubMed ID: 25920010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscale Collagen and Fibroblast Interactions Enhance Primary Human Hepatocyte Functions in Three-Dimensional Models.
    Kukla DA; Crampton AL; Wood DK; Khetani SR
    Gene Expr; 2020 Jun; 20(1):1-18. PubMed ID: 32290899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.
    Surrao DC; Waldman SD; Amsden BG
    Acta Biomater; 2012 Nov; 8(11):3997-4006. PubMed ID: 22828380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers.
    Koepsell L; Remund T; Bao J; Neufeld D; Fong H; Deng Y
    J Biomed Mater Res A; 2011 Dec; 99(4):564-75. PubMed ID: 21936046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale mechanical simulations of cell compacted collagen gels.
    Aghvami M; Barocas VH; Sander EA
    J Biomech Eng; 2013 Jul; 135(7):71004. PubMed ID: 23720151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.
    Rizvi MS; Pal A
    J Mech Behav Biomed Mater; 2014 Sep; 37():235-50. PubMed ID: 24956158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.