These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31427070)

  • 1. The Roles of Microtubules and Membrane Tension in Axonal Beading, Retraction, and Atrophy.
    Datar A; Ameeramja J; Bhat A; Srivastava R; Mishra A; Bernal R; Prost J; Callan-Jones A; Pullarkat PA
    Biophys J; 2019 Sep; 117(5):880-891. PubMed ID: 31427070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule reconfiguration during axonal retraction induced by nitric oxide.
    He Y; Yu W; Baas PW
    J Neurosci; 2002 Jul; 22(14):5982-91. PubMed ID: 12122060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.
    Sainath R; Gallo G
    Dev Neurobiol; 2015 Jul; 75(7):757-77. PubMed ID: 25404503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.
    Ertürk A; Hellal F; Enes J; Bradke F
    J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAP7 Prevents Axonal Branch Retraction by Creating a Stable Microtubule Boundary to Rescue Polymerization.
    Tymanskyj SR; Ma L
    J Neurosci; 2019 Sep; 39(36):7118-7131. PubMed ID: 31391261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor proteins regulate force interactions between microtubules and microfilaments in the axon.
    Ahmad FJ; Hughey J; Wittmann T; Hyman A; Greaser M; Baas PW
    Nat Cell Biol; 2000 May; 2(5):276-80. PubMed ID: 10806478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin II activity is required for severing-induced axon retraction in vitro.
    Gallo G
    Exp Neurol; 2004 Sep; 189(1):112-21. PubMed ID: 15296841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Axon as an Active Partner with the Growth Cone in Axonal Elongation.
    de Rooij R; Kuhl E; Miller KE
    Biophys J; 2018 Nov; 115(9):1783-1795. PubMed ID: 30309611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility.
    Gallo G; Yee HF; Letourneau PC
    J Cell Biol; 2002 Sep; 158(7):1219-28. PubMed ID: 12356866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon branching requires interactions between dynamic microtubules and actin filaments.
    Dent EW; Kalil K
    J Neurosci; 2001 Dec; 21(24):9757-69. PubMed ID: 11739584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.
    Avwenagha O; Campbell G; Bird MM
    J Neurocytol; 2003 Nov; 32(9):1077-89. PubMed ID: 15044840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low concentration of LatB dramatically changes the microtubule organization and the timing of vegetative nucleus/generative cell entrance in tobacco pollen tubes.
    Idilli AI; Onelli E; Moscatelli A
    Plant Signal Behav; 2012 Aug; 7(8):947-50. PubMed ID: 22827942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter.
    Fan A; Tofangchi A; Kandel M; Popescu G; Saif T
    Sci Rep; 2017 Oct; 7(1):14188. PubMed ID: 29079766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of local actin instability in axon formation.
    Bradke F; Dotti CG
    Science; 1999 Mar; 283(5409):1931-4. PubMed ID: 10082468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons.
    Ligon LA; Steward O
    J Comp Neurol; 2000 Nov; 427(3):351-61. PubMed ID: 11054698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.