These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31427576)

  • 21. Electrochemical conversion of CO
    Nguyen DLT; Nguyen TM; Lee SY; Kim J; Kim SY; Le QV; Varma RS; Hwang YJ
    Environ Res; 2022 Aug; 211():113116. PubMed ID: 35304112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimetallic Ni-Based Catalysts for CO
    Tsiotsias AI; Charisiou ND; Yentekakis IV; Goula MA
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selectivities of Stepped Cu-M (M = Pt, Ni, Pd, Zn, Ag, Au) Bimetallic Surface Environment for C1 and C2 Pathways.
    Sun T; Wu J; Lu X; Tang X
    Langmuir; 2024 Apr; 40(17):9289-9298. PubMed ID: 38646870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO
    Luc W; Collins C; Wang S; Xin H; He K; Kang Y; Jiao F
    J Am Chem Soc; 2017 Feb; 139(5):1885-1893. PubMed ID: 28094994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology.
    Sun X; Shao X; Yi J; Zhang J; Liu Y
    Chemosphere; 2022 Apr; 293():133595. PubMed ID: 35031250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO
    Li J; Li J; Dun C; Chen W; Zhang D; Gu J; Urban JJ; Ager JW
    RSC Adv; 2021 Jul; 11(39):23948-23959. PubMed ID: 35478999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO
    Brix F; Desbuis V; Piccolo L; Gaudry É
    J Phys Chem Lett; 2020 Sep; 11(18):7672-7678. PubMed ID: 32787294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO
    Guo C; Zhang T; Lu X; Wu CL
    ChemSusChem; 2021 Jul; 14(13):2731-2739. PubMed ID: 33931946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction.
    Deng L; Ai X; Xie F; Zhou G
    Chem Asian J; 2021 Apr; 16(8):949-958. PubMed ID: 33646609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Review on Bimetallic Nickel-Based Catalysts for CO
    Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S
    Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective CO
    Zhao R; Zhu Z; Ouyang T; Liu ZQ
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202313597. PubMed ID: 37853853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction-intermediate-induced atomic mobility in heterogeneous metal catalysts for electrochemical reduction of CO
    Li F; Zhou C; Feygin E; Roy PN; Chen LD; Klinkova A
    Phys Chem Chem Phys; 2022 Aug; 24(32):19432-19442. PubMed ID: 35920756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bimetallic Cu-Bi catalysts for efficient electroreduction of CO
    Li L; Jin X; Yu X; Zhong M
    Front Chem; 2022; 10():983778. PubMed ID: 36262342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Framework-Derived BiIn Bimetallic Oxide Nanoparticles Embedded in Carbon Networks for Efficient Electrochemical Reduction of CO
    Wang Q; Yang X; Zang H; Chen F; Wang C; Yu N; Geng B
    Inorg Chem; 2022 Aug; 61(30):12003-12011. PubMed ID: 35838600
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Xu Y; Liu W; Xu Z; Zhou Y; Yu XY
    Chem Commun (Camb); 2023 Jul; 59(55):8596-8599. PubMed ID: 37341463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper⁻Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide.
    Wang Y; Niu C; Zhu Y
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30704109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Approaches for CO
    Overa S; Ko BH; Zhao Y; Jiao F
    Acc Chem Res; 2022 Mar; 55(5):638-648. PubMed ID: 35041403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.
    Back S; Kim JH; Kim YT; Jung Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23022-7. PubMed ID: 27526778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selectivity control for CO
    Liu H; Shi E; Guo W; Sun Z; Fang Z; Zhu Z; Jiao L; Zhai Y; Lu X
    Chem Commun (Camb); 2023 Aug; 59(64):9746-9749. PubMed ID: 37482813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.