These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31427582)

  • 1. Compartmentalization-induced phosphorescent emission enhancement and triplet energy transfer in aqueous medium.
    Li Z; Han Y; Wang F
    Nat Commun; 2019 Aug; 10(1):3735. PubMed ID: 31427582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bioinspired Light Harvesting System in Aqueous Medium: Highly Efficient Energy Transfer through the Self Assembly of β-Sheet Nanostructures of Poly-d-Lysine.
    Nandy A; Mukherjee S
    J Phys Chem Lett; 2022 Jul; 13(29):6701-6710. PubMed ID: 35848986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and properties of new phosphorescent red light-excitable platinum(II) and palladium(II) complexes with Schiff bases for oxygen sensing and triplet-triplet annihilation-based upconversion.
    Borisov SM; Saf R; Fischer R; Klimant I
    Inorg Chem; 2013 Feb; 52(3):1206-16. PubMed ID: 23231719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissive Platinum(II) Macrocycles as Tunable Cascade Energy Transfer Scaffolds.
    Acharyya K; Bhattacharyya S; Lu S; Sun Y; Mukherjee PS; Stang PJ
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202200715. PubMed ID: 35107874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes.
    Fukagawa H; Shimizu T; Hanashima H; Osada Y; Suzuki M; Fujikake H
    Adv Mater; 2012 Sep; 24(37):5099-103. PubMed ID: 22887861
    [No Abstract]   [Full Text] [Related]  

  • 6. Triplet-triplet energy transfer in artificial and natural photosynthetic antennas.
    Ho J; Kish E; Méndez-Hernández DD; WongCarter K; Pillai S; Kodis G; Niklas J; Poluektov OG; Gust D; Moore TA; Moore AL; Batista VS; Robert B
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5513-E5521. PubMed ID: 28652359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of phosphorescent triplet states via photoinduced electron transfer: energy and electron transfer dynamics in Pt porphyrin-Rhodamine B dyads.
    Mani T; Niedzwiedzki DM; Vinogradov SA
    J Phys Chem A; 2012 Apr; 116(14):3598-610. PubMed ID: 22400988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.
    Wang Z; Cheng P; He P; Liu Y; Zhou Y; Zhou Q
    Luminescence; 2015 Sep; 30(6):719-22. PubMed ID: 25349104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoids and Photosynthesis.
    Hashimoto H; Uragami C; Cogdell RJ
    Subcell Biochem; 2016; 79():111-39. PubMed ID: 27485220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes.
    You ZQ; Hsu CP
    J Phys Chem A; 2011 Apr; 115(16):4092-100. PubMed ID: 21410281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid nanostructures for efficient light harvesting.
    Mackowski S
    J Phys Condens Matter; 2010 May; 22(19):193102. PubMed ID: 21386429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for water-mediated triplet-triplet energy transfer in the photoprotective site of the peridinin-chlorophyll a-protein.
    Di Valentin M; Tait CE; Salvadori E; Orian L; Polimeno A; Carbonera D
    Biochim Biophys Acta; 2014 Jan; 1837(1):85-97. PubMed ID: 23871938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein-Protein Conjugation Strategy.
    Bischoff AJ; Hamerlynck LM; Li AJ; Roberts TD; Ginsberg NS; Francis MB
    J Am Chem Soc; 2023 Jul; 145(29):15827-15837. PubMed ID: 37438911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics.
    Zou Q; Liu K; Abbas M; Yan X
    Adv Mater; 2016 Feb; 28(6):1031-43. PubMed ID: 26273821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Artificial Light-Harvesting Systems by Covalent Alignment of Aggregation-Induced Emission Molecules.
    Liu S; Jiang S; Xu J; Huang Z; Li F; Fan X; Luo Q; Tian W; Liu J; Xu B
    Macromol Rapid Commun; 2019 May; 40(9):e1800892. PubMed ID: 30791167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Near-infrared Phosphorescent Emission Modulated by Clipping of Metallotweezers in Aqueous Media.
    Luan Z; Wang F; Tian Y
    Chemistry; 2024 Jul; 30(40):e202401022. PubMed ID: 38747055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of the triplet excitations in the Fenna-Matthews-Olson complex.
    Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S
    J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching.
    Wientjes E; Renger J; Curto AG; Cogdell R; van Hulst NF
    Nat Commun; 2014 Jun; 5():4236. PubMed ID: 24953833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiro-linked hyperbranched architecture in electrophosphorescent conjugated polymers for tailoring triplet energy back transfer.
    Shao S; Ma Z; Ding J; Wang L; Jing X; Wang F
    Adv Mater; 2012 Apr; 24(15):2009-13. PubMed ID: 22431293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
    Niedzwiedzki DM; Swainsbury DJK; Canniffe DP; Hunter CN; Hitchcock A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6502-6508. PubMed ID: 32139606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.