BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 31427598)

  • 1. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system.
    Kang JG; Park JS; Ko JH; Kim YS
    Sci Rep; 2019 Aug; 9(1):11960. PubMed ID: 31427598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner.
    O'Geen H; Bates SL; Carter SS; Nisson KA; Halmai J; Fink KD; Rhie SK; Farnham PJ; Segal DJ
    Epigenetics Chromatin; 2019 May; 12(1):26. PubMed ID: 31053162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system.
    Josipović G; Tadić V; Klasić M; Zanki V; Bečeheli I; Chung F; Ghantous A; Keser T; Madunić J; Bošković M; Lauc G; Herceg Z; Vojta A; Zoldoš V
    Nucleic Acids Res; 2019 Oct; 47(18):9637-9657. PubMed ID: 31410472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
    Vojta A; Dobrinić P; Tadić V; Bočkor L; Korać P; Julg B; Klasić M; Zoldoš V
    Nucleic Acids Res; 2016 Jul; 44(12):5615-28. PubMed ID: 26969735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9.
    Sapozhnikov DM; Szyf M
    Nat Commun; 2021 Sep; 12(1):5711. PubMed ID: 34588447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable targeted epigenetic editing using CRISPR system in Bombyx mori.
    Liu Y; Ma S; Chang J; Zhang T; Chen X; Liang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jul; 110():105-111. PubMed ID: 31022512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-mediated promoter de/methylation technologies for gene regulation.
    Sung CK; Yim H
    Arch Pharm Res; 2020 Jul; 43(7):705-713. PubMed ID: 32725389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editing of DNA methylation using CRISPR/Cas9 and a ssDNA template in human cells.
    Katayama S; Andou M
    Biochem Biophys Res Commun; 2021 Dec; 581():20-24. PubMed ID: 34653674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
    Choudhury SR; Cui Y; Lubecka K; Stefanska B; Irudayaraj J
    Oncotarget; 2016 Jul; 7(29):46545-46556. PubMed ID: 27356740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Notes on Functional Modules in the Assembly of CRISPR/Cas9-Mediated Epigenetic Modifiers.
    Kondrashov A; Karpova E
    Methods Mol Biol; 2021; 2198():401-428. PubMed ID: 32822047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Gene Expression Using dCas9-SunTag Platforms.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2023; 2577():189-195. PubMed ID: 36173574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions.
    Morita S; Horii T; Hatada I
    Methods Mol Biol; 2018; 1767():419-428. PubMed ID: 29524149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Luciferase Reporter Assay for Prescreening CRISPR (d)Cas9-Mediated Epigenetic Editing on a Plant Promoter Using Human Cells.
    Hinrichs AK; Koch A; Richter AM
    Methods Mol Biol; 2024; 2788():273-285. PubMed ID: 38656520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis.
    Wang M; He L; Chen B; Wang Y; Wang L; Zhou W; Zhang T; Cao L; Zhang P; Xie L; Zhang Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.