These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31427701)

  • 1. A comprehensive computational study of amino acid interactions in membrane proteins.
    Mbaye MN; Hou Q; Basu S; Teheux F; Pucci F; Rooman M
    Sci Rep; 2019 Aug; 9(1):12043. PubMed ID: 31427701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marker residue types at the structural regions of transmembrane alpha-helical and beta-barrel interfaces.
    Beytur S
    Proteins; 2021 Sep; 89(9):1145-1157. PubMed ID: 33890696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid interaction preferences in helical membrane proteins.
    Jha AN; Vishveshwara S; Banavar JR
    Protein Eng Des Sel; 2011 Aug; 24(8):579-88. PubMed ID: 21666247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid distributions in integral membrane protein structures.
    Ulmschneider MB; Sansom MS
    Biochim Biophys Acta; 2001 May; 1512(1):1-14. PubMed ID: 11334619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric amino acid compositions of transmembrane beta-strands.
    Chamberlain AK; Bowie JU
    Protein Sci; 2004 Aug; 13(8):2270-4. PubMed ID: 15273317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of amino acid properties in all-beta globular and outer membrane protein structures.
    Gromiha MM; Suwa M
    Int J Biol Macromol; 2003 Sep; 32(3-5):93-8. PubMed ID: 12957305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: application to the distribution of aromatic versus aliphatic hydrophobic amino acids in transmembrane alpha-helical spanners of integral membrane transport proteins.
    Tsang S; Saier MH
    J Comput Biol; 1996; 3(1):185-90. PubMed ID: 8697235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GeTFEP: A general transfer free energy profile of transmembrane proteins.
    Tian W; Naveed H; Lin M; Liang J
    Protein Sci; 2020 Feb; 29(2):469-479. PubMed ID: 31658402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-residue interactions in alpha-helical transmembrane proteins.
    Mayol E; Campillo M; Cordomí A; Olivella M
    Bioinformatics; 2019 Aug; 35(15):2578-2584. PubMed ID: 30566615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPCRtm: An amino acid substitution matrix for the transmembrane region of class A G Protein-Coupled Receptors.
    Rios S; Fernandez MF; Caltabiano G; Campillo M; Pardo L; Gonzalez A
    BMC Bioinformatics; 2015 Jul; 16():206. PubMed ID: 26134144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Computational methods for prediction of structure of membrane proteins using their amino acids sequences].
    Simakova MN; Simakov NN
    Mol Biol (Mosk); 2013; 47(2):347-55. PubMed ID: 23808170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the importance of polar interactions for complexes containing intrinsically disordered proteins.
    Wong ET; Na D; Gsponer J
    PLoS Comput Biol; 2013; 9(8):e1003192. PubMed ID: 23990768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of residues involving cation-pi interactions in different folding types of membrane proteins.
    Gromiha MM; Suwa M
    Int J Biol Macromol; 2005 Mar; 35(1-2):55-62. PubMed ID: 15769516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.
    Lin M; Gessmann D; Naveed H; Liang J
    J Am Chem Soc; 2016 Mar; 138(8):2592-601. PubMed ID: 26860422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural dissection of amino acid substitutions in helical transmembrane proteins.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-Helical Salt Bridge Contribution to Membrane Protein Insertion.
    Duart G; Lamb J; Ortiz-Mateu J; Elofsson A; Mingarro I
    J Mol Biol; 2022 Mar; 434(5):167467. PubMed ID: 35093395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.
    Saidijam M; Azizpour S; Patching SG
    J Biomol Struct Dyn; 2018 Feb; 36(2):443-464. PubMed ID: 28150531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural imperatives impose diverse evolutionary constraints on helical membrane proteins.
    Oberai A; Joh NH; Pettit FK; Bowie JU
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17747-50. PubMed ID: 19815527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the amino acid interactions that promote or decrease protein solubility.
    Hou Q; Bourgeas R; Pucci F; Rooman M
    Sci Rep; 2018 Oct; 8(1):14661. PubMed ID: 30279585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.