These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 3142774)
1. Effects of metabolite binding to ribulosebisphosphate carboxylase on the activity of the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1988 Nov; 177(2):351-5. PubMed ID: 3142774 [TBL] [Abstract][Full Text] [Related]
2. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Furbank RT; Lilley RM Biochim Biophys Acta; 1980 Aug; 592(1):65-75. PubMed ID: 6772219 [TBL] [Abstract][Full Text] [Related]
3. On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1989 Jun; 182(2):373-7. PubMed ID: 2544426 [TBL] [Abstract][Full Text] [Related]
4. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach. Williams JF; MacLeod JK Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443 [TBL] [Abstract][Full Text] [Related]
5. Photosynthesis by isolated chloroplasts. Reversal of orthophosphate inhibition by Calvin-cycle intermediates. Cockburn W; Walker DA; Baldry CW Biochem J; 1968 Mar; 107(1):89-95. PubMed ID: 5642624 [TBL] [Abstract][Full Text] [Related]
6. Photoreductive path of carbon fixation in green plant photosynthesis. Reaction pathway of six-carbon ribulose 1,5-bisphosphate carboxylation adduct intermediate. Fong FK; Butcher KA Biochem Biophys Res Commun; 1987 Feb; 142(3):732-7. PubMed ID: 3827899 [TBL] [Abstract][Full Text] [Related]
7. The Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch Accumulation in Arabidopsis. Flügel F; Timm S; Arrivault S; Florian A; Stitt M; Fernie AR; Bauwe H Plant Cell; 2017 Oct; 29(10):2537-2551. PubMed ID: 28947491 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Miyagawa Y; Tamoi M; Shigeoka S Nat Biotechnol; 2001 Oct; 19(10):965-9. PubMed ID: 11581664 [TBL] [Abstract][Full Text] [Related]
9. Regulation of ribulose-1,5-bisphosphate carboxylase from tobacco: changes in pH response and affinity for CO2 and Mg2+ induced by chloroplast intermediates. Hatch AL; Jensen RG Arch Biochem Biophys; 1980 Dec; 205(2):587-94. PubMed ID: 6781414 [No Abstract] [Full Text] [Related]
10. Model studies of the regulation of the Calvin photosynthesis cycle by cytosolic metabolites. Pettersson G; Ryde-Pettersson U Biomed Biochim Acta; 1990; 49(8-9):723-32. PubMed ID: 2128020 [TBL] [Abstract][Full Text] [Related]
11. The regulatory interplay between photorespiration and photosynthesis. Timm S; Florian A; Fernie AR; Bauwe H J Exp Bot; 2016 May; 67(10):2923-9. PubMed ID: 26969745 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model of the Calvin photosynthesis cycle. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1988 Aug; 175(3):661-72. PubMed ID: 3137030 [TBL] [Abstract][Full Text] [Related]
14. Does the stromal concentration of P Vanlerberghe GC; Dahal K; Chadee A Plant Signal Behav; 2019; 14(12):1675473. PubMed ID: 31583956 [TBL] [Abstract][Full Text] [Related]
15. Optimization of CO₂fixation in photosynthetic cells via thermodynamic buffering. Igamberdiev AU; Kleczkowski LA Biosystems; 2011 Feb; 103(2):224-9. PubMed ID: 20933572 [TBL] [Abstract][Full Text] [Related]
16. Regulation of cyclic electron flow in C₃ plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase. Livingston AK; Kanazawa A; Cruz JA; Kramer DM Plant Cell Environ; 2010 Nov; 33(11):1779-88. PubMed ID: 20545877 [TBL] [Abstract][Full Text] [Related]
17. Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Badger MR; Lorimer GH Biochemistry; 1981 Apr; 20(8):2219-25. PubMed ID: 7236594 [TBL] [Abstract][Full Text] [Related]
18. Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. Flechner A; Gross W; Martin WF; Schnarrenberger C FEBS Lett; 1999 Mar; 447(2-3):200-2. PubMed ID: 10214945 [TBL] [Abstract][Full Text] [Related]
19. Metabolites controlling the rate of starch synthesis in the chloroplast of C3 plants. Pettersson G; Ryde-Pettersson U Eur J Biochem; 1989 Jan; 179(1):169-72. PubMed ID: 2537197 [TBL] [Abstract][Full Text] [Related]
20. Protein liganding to the activator cation of ribulosebisphosphate carboxylase. Miziorko HM; Behnke CE; Houkom EC Biochemistry; 1982 Dec; 21(26):6669-74. PubMed ID: 6818984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]