These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3142852)

  • 1. Regulation of the galactose-inducible lac operon and the histidine utilization operons in pts mutants of Klebsiella aerogenes.
    Baldauf SL; Cardani MA; Bender RA
    J Bacteriol; 1988 Dec; 170(12):5588-93. PubMed ID: 3142852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
    Atkinson MR; Wray LV; Fisher SH
    J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and physical maps of Klebsiella aerogenes genes for histidine utilization (hut).
    Boylan SA; Bender RA
    Mol Gen Genet; 1984; 193(1):99-103. PubMed ID: 6361501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the hut operons of Salmonella typhimurium in Klebsiella aerogenes and in Escherichia coli.
    Parada JL; Magasanik B
    J Bacteriol; 1975 Dec; 124(3):1263-8. PubMed ID: 362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tn1000-mediated insertion mutagenesis of the histidine utilization (hut) gene cluster from Klebsiella aerogenes: genetic analysis of hut and unusual target specificity of Tn1000.
    Schwacha A; Cohen JA; Gehring KB; Bender RA
    J Bacteriol; 1990 Oct; 172(10):5991-8. PubMed ID: 2170334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning chromosomal lac genes of Klebsiella pneumoniae.
    MacDonald C; Riley M
    Gene; 1983 Oct; 24(2-3):341-5. PubMed ID: 6416930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase as a repressor of transcription in the hut(P) region of mutant Klebsiella aerogenes histidine utilization operons.
    Nieuwkoop AJ; Bender RA
    J Bacteriol; 1988 Oct; 170(10):4986-90. PubMed ID: 3170491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon.
    Oda M; Sugishita A; Furukawa K
    J Bacteriol; 1988 Jul; 170(7):3199-205. PubMed ID: 2454913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the hut operons of Salmonella typhimurium and Klebsiella aerogenes by the heterologous hut repressors.
    Gerson SL; Magasanik B
    J Bacteriol; 1975 Dec; 124(3):1269-72. PubMed ID: 363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene order of the histidine utilization (hut) operons in Klebsiella aerogenes.
    Goldberg RB; Magasanik B
    J Bacteriol; 1975 Jun; 122(3):1025-31. PubMed ID: 238937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of super-repressor mutants in the histidine utilization system of Salmonella typhimurium.
    Hagen DC; Gerson SL; Magasanik B
    J Bacteriol; 1975 Feb; 121(2):583-93. PubMed ID: 234417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glnL and other regulatory loci on regulation of transcription of glnA-lacZ fusions in Klebsiella aerogenes.
    Goldie H; Magasanik B
    J Bacteriol; 1982 Apr; 150(1):231-8. PubMed ID: 6120932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of catabolite activator protein sites centered at -81.5 and -41.5 in the activation of the Klebsiella aerogenes histidine utilization operon hutUH.
    Osuna R; Janes BK; Bender RA
    J Bacteriol; 1994 Sep; 176(17):5513-24. PubMed ID: 8071230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Klebsiella aerogenes.
    Schwacha A; Bender RA
    J Bacteriol; 1990 Sep; 172(9):5477-81. PubMed ID: 2203754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the Klebsiella aerogenes nac gene, which encodes a factor required for nitrogen regulation of the histidine utilization (hut) operons in Salmonella typhimurium.
    Best EA; Bender RA
    J Bacteriol; 1990 Dec; 172(12):7043-8. PubMed ID: 2254273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.