These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31428675)

  • 1. Magnetic excitation of a granular gas as a bulk thermostat.
    Adachi M; Yu P; Sperl M
    NPJ Microgravity; 2019; 5():19. PubMed ID: 31428675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity Distribution of a Homogeneously Cooling Granular Gas.
    Yu P; Schröter M; Sperl M
    Phys Rev Lett; 2020 May; 124(20):208007. PubMed ID: 32501095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically excited granular matter in low gravity.
    Yu P; Stärk E; Blochberger G; Kaplik M; Offermann M; Tran D; Adachi M; Sperl M
    Rev Sci Instrum; 2019 May; 90(5):054501. PubMed ID: 31153226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free Cooling of a Granular Gas of Rodlike Particles in Microgravity.
    Harth K; Trittel T; Wegner S; Stannarius R
    Phys Rev Lett; 2018 May; 120(21):214301. PubMed ID: 29883145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of a two-dimensional immersed granular gas magnetically forced in volume.
    Gorce JB; Falcon E
    Phys Rev E; 2023 Mar; 107(3-1):034903. PubMed ID: 37073048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational and translational motions in a homogeneously cooling granular gas.
    Trittel T; Puzyrev D; Harth K; Stannarius R
    NPJ Microgravity; 2024 Jul; 10(1):81. PubMed ID: 39085254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing temperature of cooling granular gases.
    Brilliantov NV; Formella A; Pöschel T
    Nat Commun; 2018 Feb; 9(1):797. PubMed ID: 29476073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of vibrated granular gases.
    Barrat A; Trizac E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051303. PubMed ID: 12513481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic approach to granular gases.
    Puglisi A; Loreto V; Marini Bettolo Marconi U; Vulpiani A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5582-95. PubMed ID: 11969539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport coefficients for granular media from molecular dynamics simulations.
    Bizon C; Shattuck MD; Swift JB; Swinney HL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4340-51. PubMed ID: 11970288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.
    Sirmas N; Radulescu MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023003. PubMed ID: 25768593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering of inelastic soft spheres in homogeneous turbulence.
    Burgener T; Kadau D; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036321. PubMed ID: 23031027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.
    Buist KA; Jayaprakash P; Kuipers JAM; Deen NG; Padding JT
    AIChE J; 2017 Dec; 63(12):5335-5342. PubMed ID: 29213144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle size on energy dissipation in viscoelastic granular collisions.
    Antypov D; Elliott JA; Hancock BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021303. PubMed ID: 21928986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle Dynamics at the Onset of the Granular Gas-Liquid Transition.
    Noirhomme M; Cazaubiel A; Falcon E; Fischer D; Garrabos Y; Lecoutre-Chabot C; Mawet S; Opsomer E; Palencia F; Pillitteri S; Vandewalle N
    Phys Rev Lett; 2021 Mar; 126(12):128002. PubMed ID: 33834798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical excitation of rodlike particles by a vibrating plate.
    Trittel T; Harth K; Stannarius R
    Phys Rev E; 2017 Jun; 95(6-1):062904. PubMed ID: 28709235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering and segregation in driven granular fluids.
    Opsomer E; Vandewalle N; Noirhomme M; Ludewig F
    Eur Phys J E Soft Matter; 2014 Nov; 37(11):115. PubMed ID: 25412823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact-Induced Energy Transfer and Dissipation in Granular Clusters under Microgravity Conditions.
    Katsuragi H; Blum J
    Phys Rev Lett; 2018 Nov; 121(20):208001. PubMed ID: 30500230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical collision network in granular gases.
    Alvarez-Hamelin JI; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051302. PubMed ID: 17677049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.