These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31428675)

  • 21. Energy fluctuations in the homogeneous cooling state of granular gases.
    Brey JJ; García de Soria MI; Maynar P; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011302. PubMed ID: 15324044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The inelastic hard dimer gas: a nonspherical model for granular matter.
    Costantini G; Marini Bettolo Marconi U; Kalibaeva G; Ciccotti G
    J Chem Phys; 2005 Apr; 122(16):164505. PubMed ID: 15945691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles.
    Abu-Bakr AF; Zubarev A
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180216. PubMed ID: 30827219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Velocity Distribution of a Homogeneously Driven Two-Dimensional Granular Gas.
    Scholz C; Pöschel T
    Phys Rev Lett; 2017 May; 118(19):198003. PubMed ID: 28548514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of inhomogeneous cooling in granular fluids.
    Das SK; Puri S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011302. PubMed ID: 12935132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cluster-growth in freely cooling granular media.
    Luding S; Herrmann HJ
    Chaos; 1999 Sep; 9(3):673-681. PubMed ID: 12779863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driven fragmentation of granular gases.
    Cruz Hidalgo R; Pagonabarraga I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061305. PubMed ID: 18643255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collision statistics of driven granular materials.
    Blair DL; Kudrolli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041301. PubMed ID: 12786356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the distance to equipartition by controlling the collision rate in a driven granular gas experiment.
    Castillo G; Merminod S; Falcon E; Berhanu M
    Phys Rev E; 2020 Mar; 101(3-1):032903. PubMed ID: 32289943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat.
    Stoyanov SD; Groot RD
    J Chem Phys; 2005 Mar; 122(11):114112. PubMed ID: 15836206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetically Assisted Bilayer Composites for Soft Bending Actuators.
    Jang SH; Na SH; Park YL
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homogeneous steady state of a confined granular gas.
    Brey JJ; García de Soria MI; Maynar P; Buzón V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062205. PubMed ID: 24483434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collision dynamics of particle clusters in a two-dimensional granular gas.
    Burton JC; Lu PY; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062204. PubMed ID: 24483433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the collision, acoustic and thermal energy dissipation distribution of discrete mass.
    Shengwu Z; Chiming W; Yuanchao Z; Wei X; Yanan L; Jianwei C; Shunzhi Z
    Sci Rep; 2024 Jul; 14(1):16726. PubMed ID: 39030345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition to a labyrinthine phase in a driven granular medium.
    Merminod S; Jamin T; Falcon E; Berhanu M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062205. PubMed ID: 26764680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collision frequencies and energy flux in a dilute granular gas.
    Aumaître S; Fauve S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010302. PubMed ID: 16486107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical proposal for the assessment of the molecular excitation levels contribution to the mean excitation energy: Application to the water molecule.
    Geser FA; Valente M
    Appl Radiat Isot; 2021 Feb; 168():109533. PubMed ID: 33316628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Local Galilean Invariant Thermostat.
    Groot RD
    J Chem Theory Comput; 2006 May; 2(3):568-74. PubMed ID: 26626664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Velocity distributions of granular gases with drag and with long-range interactions.
    Kohlstedt K; Snezhko A; Sapozhnikov MV; Aranson IS; Olafsen JS; Ben-Naim E
    Phys Rev Lett; 2005 Aug; 95(6):068001. PubMed ID: 16090992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enskog kinetic theory for multicomponent granular suspensions.
    González RG; Khalil N; Garzó V
    Phys Rev E; 2020 Jan; 101(1-1):012904. PubMed ID: 32069611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.