These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31429162)

  • 1. Tuning the Chemistry of Organonitrogen Compounds for Promoting All-Organic Anionic Rechargeable Batteries.
    Jouhara A; Quarez E; Dolhem F; Armand M; Dupré N; Poizot P
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15680-15684. PubMed ID: 31429162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pairing Cross-Linked Polyviologen with Aromatic Amine Host Structure for Anion Shuttle Rechargeable Batteries.
    Cadiou V; Gaillot AC; Deunf É; Dolhem F; Dubois L; Gutel T; Poizot P
    ChemSusChem; 2020 May; 13(9):2345-2353. PubMed ID: 32207880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Anion Insertion in Molecular Phenothiazine-Based Redox-Active Positive Material for Organic Ion Batteries.
    Rajesh M; Dolhem F; Davoisne C; Becuwe M
    ChemSusChem; 2020 May; 13(9):2364-2370. PubMed ID: 32190982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All organic sodium-ion batteries with Na₄C₈H₂O₆.
    Wang S; Wang L; Zhu Z; Hu Z; Zhao Q; Chen J
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5892-6. PubMed ID: 24677513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries.
    Shin JY; Yamada T; Yoshikawa H; Awaga K; Shinokubo H
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3096-101. PubMed ID: 24554515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.
    Wu M; Cui Y; Bhargav A; Losovyj Y; Siegel A; Agarwal M; Ma Y; Fu Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10027-31. PubMed ID: 27411083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable Intermetallic Calcium-Lithium-O
    Kim MJ; Kang HJ; Im WB; Jun YS
    ChemSusChem; 2020 Feb; 13(3):574-581. PubMed ID: 31777180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries.
    Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.
    Grayfer ED; Pazhetnov EM; Kozlova MN; Artemkina SB; Fedorov VE
    ChemSusChem; 2017 Dec; 10(24):4805-4811. PubMed ID: 29164810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Li4C8H2O6 nanosheets for lithium-ion batteries.
    Wang S; Wang L; Zhang K; Zhu Z; Tao Z; Chen J
    Nano Lett; 2013 Sep; 13(9):4404-9. PubMed ID: 23978244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Electrode Materials for Metal Ion Batteries.
    Shea JJ; Luo C
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5361-5380. PubMed ID: 31917538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries.
    Lu Y; Cai Y; Zhang Q; Chen J
    Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethoxycarbonyl-based organic electrode for Li-batteries.
    Walker W; Grugeon S; Mentre O; Laruelle S; Tarascon JM; Wudl F
    J Am Chem Soc; 2010 May; 132(18):6517-23. PubMed ID: 20405915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries.
    Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H
    Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.