These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31429421)

  • 1. Exciton condensation in quantum wells with defects of macroscopic sizes.
    Sugakov VI
    J Phys Condens Matter; 2019 Nov; 31(47):475301. PubMed ID: 31429421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton phase transitions in semiconductor quantum wells with disc-shaped electrode.
    Chernyuk AA; Sugakov VI; Tomylko VV
    J Phys Condens Matter; 2012 May; 24(19):195803. PubMed ID: 22517115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
    Vasudev P; Jiang JH; John S
    Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation and indirect excitons: a review.
    Combescot M; Combescot R; Dubin F
    Rep Prog Phys; 2017 Jun; 80(6):066501. PubMed ID: 28355164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shedding light on exciton's nature in monolayer quantum material by optical dispersion measurements.
    Schneider LM; Esdaille SS; Rhodes DA; Barmak K; Hone JC; Rahimi-Iman A
    Opt Express; 2019 Dec; 27(26):37131-37149. PubMed ID: 31878499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Bose-Einstein condensation of excitons in potential traps.
    Butov LV; Lai CW; Ivanov AL; Gossard AC; Chemla DS
    Nature; 2002 May; 417(6884):47-52. PubMed ID: 11986661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent optical properties of shallow quantum dot excitons close to a dielectric-hyperbolic material interface.
    Ahn KJ
    Opt Express; 2021 Feb; 29(4):5098-5109. PubMed ID: 33726051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range transport in excitonic dark states in coupled quantum wells.
    Snoke D; Denev S; Liu Y; Pfeiffer L; West K
    Nature; 2002 Aug; 418(6899):754-7. PubMed ID: 12181560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Exciton Collapse in a Strongly Flattened Ellipsoidal InSb Quantum Dot.
    Dvoyan KG; Karoui A; Vlahovic B
    Nanoscale Res Lett; 2022 Aug; 17(1):77. PubMed ID: 35997852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Bose-Einstein condensation of semiconductor excitons: the biexciton polarization effect.
    Hägele D; Pfalz S; Oestreich M
    Phys Rev Lett; 2009 Oct; 103(14):146402. PubMed ID: 19905586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possibility of Exciton Bose-Einstein Condensation in CdSe Nanoplatelets.
    Baghdasaryan DA; Harutyunyan VA; Kazaryan EM; Sarkisyan HA; Petrosyan LS; Shahbazyan TV
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
    Kimura S; Kakihata K; Sawada Y; Watanabe K; Matsumoto M; Hagiwara M; Tanaka H
    Nat Commun; 2016 Sep; 7():12822. PubMed ID: 27666875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.
    Yu H; Liu GB; Gong P; Xu X; Yao W
    Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons.
    Butov LV; Ivanov AL; Imamoglu A; Littlewood PB; Shashkin AA; Dolgopolov VT; Campman KL; Gossard AC
    Phys Rev Lett; 2001 Jun; 86(24):5608-11. PubMed ID: 11415313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe
    Stier AV; Wilson NP; Clark G; Xu X; Crooker SA
    Nano Lett; 2016 Nov; 16(11):7054-7060. PubMed ID: 27718588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Inverse Scaling of Exciton-Exciton Annihilation Coefficient with Exciton Lifetime.
    Uddin SZ; Rabani E; Javey A
    Nano Lett; 2021 Jan; 21(1):424-429. PubMed ID: 33320011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Spin-Flip Collisions in a Dark-Exciton Condensate.
    Misra S; Stern M; Umansky V; Bar-Joseph I
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203531119. PubMed ID: 35921437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pair of 2D Quantum Liquids: Investigating the Phase Behavior of Indirect Excitons.
    Wrona PR; Rabani E; Geissler PL
    ACS Nano; 2022 Sep; 16(9):15339-15346. PubMed ID: 36069715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical point for Bose-Einstein condensation of excitons in graphite.
    Wang J; Nie P; Li X; Zuo H; Fauqué B; Zhu Z; Behnia K
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30215-30219. PubMed ID: 33199600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Berry phase effect on the exciton transport and on the exciton Bose-Einstein condensate.
    Yao W; Niu Q
    Phys Rev Lett; 2008 Sep; 101(10):106401. PubMed ID: 18851231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.