These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31429455)

  • 1. Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices.
    Shakeri A; Imani SM; Chen E; Yousefi H; Shabbir R; Didar TF
    Lab Chip; 2019 Sep; 19(18):3104-3115. PubMed ID: 31429455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.
    Sathish S; Ricoult SG; Toda-Peters K; Shen AQ
    Analyst; 2017 May; 142(10):1772-1781. PubMed ID: 28430279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists.
    Temiz Y; Lovchik RD; Delamarche E
    Methods Mol Biol; 2017; 1547():37-47. PubMed ID: 28044285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous membrane-sealed microfluidic devices for improved cell viability.
    Masand SN; Mignone L; Zahn JD; Shreiber DI
    Biomed Microdevices; 2011 Dec; 13(6):955-61. PubMed ID: 21710369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-swelling hydrogel-based microfluidic chips.
    Shen C; Li Y; Wang Y; Meng Q
    Lab Chip; 2019 Dec; 19(23):3962-3973. PubMed ID: 31656966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip CO2 control for microfluidic cell culture.
    Forry SP; Locascio LE
    Lab Chip; 2011 Dec; 11(23):4041-6. PubMed ID: 21996787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning.
    Loessberg-Zahl J; Beumer J; van den Berg A; Eijkel JCT; van der Meer AD
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells.
    Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H
    Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting of antibodies inside integrated microfluidic-microoptic devices by means of automated microcontact printing.
    Bou Chakra E; Hannes B; Vieillard J; Mansfield CD; Mazurczyk R; Bouchard A; Potempa J; Krawczyk S; Cabrera M
    Sens Actuators B Chem; 2009 Jun; 140(1):278-286. PubMed ID: 20161128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.