These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31429483)

  • 1. Bacterial Type I CRISPR-Cas systems influence inflammasome activation in mammalian host by promoting autophagy.
    Wu Q; Wang B; Zhou C; Lin P; Qin S; Gao P; Wang Z; Xia Z; Wu M
    Immunology; 2019 Nov; 158(3):240-251. PubMed ID: 31429483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity.
    Li R; Fang L; Tan S; Yu M; Li X; He S; Wei Y; Li G; Jiang J; Wu M
    Cell Res; 2016 Dec; 26(12):1273-1287. PubMed ID: 27857054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system.
    Høyland-Kroghsbo NM; Paczkowski J; Mukherjee S; Broniewski J; Westra E; Bondy-Denomy J; Bassler BL
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):131-135. PubMed ID: 27849583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion.
    Sampson TR; Napier BA; Schroeder MR; Louwen R; Zhao J; Chin CY; Ratner HK; Llewellyn AC; Jones CL; Laroui H; Merlin D; Zhou P; Endtz HP; Weiss DS
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):11163-8. PubMed ID: 25024199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature, by Controlling Growth Rate, Regulates CRISPR-Cas Activity in Pseudomonas aeruginosa.
    Høyland-Kroghsbo NM; Muñoz KA; Bassler BL
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR control of virulence in Pseudomonas aeruginosa.
    Wiedenheft B; Bondy-Denomy J
    Cell Res; 2017 Feb; 27(2):163-164. PubMed ID: 28084330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa.
    Luz ACO; da Silva JMA; Rezende AM; de Barros MPS; Leal-Balbino TC
    Mol Genet Genomics; 2019 Oct; 294(5):1095-1105. PubMed ID: 31098740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and applications of Type I CRISPR-Cas systems.
    Hidalgo-Cantabrana C; Barrangou R
    Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in CRISPR-Cas Systems.
    Sternberg SH; Richter H; Charpentier E; Qimron U
    Mol Cell; 2016 Mar; 61(6):797-808. PubMed ID: 26949040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections.
    Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS
    Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in the durability of CRISPR-Cas immunity.
    Chabas H; Nicot A; Meaden S; Westra ER; Tremblay DM; Pradier L; Lion S; Moineau S; Gandon S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180097. PubMed ID: 30905283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.
    McGinn J; Marraffini LA
    Mol Cell; 2016 Nov; 64(3):616-623. PubMed ID: 27618488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas systems: new players in gene regulation and bacterial physiology.
    Sampson TR; Weiss DS
    Front Cell Infect Microbiol; 2014; 4():37. PubMed ID: 24772391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus.
    Baliga P; Shekar M; Venugopal MN
    Mol Genet Genomics; 2019 Feb; 294(1):253-262. PubMed ID: 30357478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas Systems in Prokaryotes.
    Burmistrz M; Pyrć K
    Pol J Microbiol; 2015; 64(3):193-202. PubMed ID: 26638527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.