These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 31429498)
1. Genome-wide nucleotide variation distinguishes Aspergillus flavus from Aspergillus oryzae and helps to reveal origins of atoxigenic A. flavus biocontrol strains. Chang PK J Appl Microbiol; 2019 Nov; 127(5):1511-1520. PubMed ID: 31429498 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard Chang PK; Chang TD; Katoh K Lett Appl Microbiol; 2021 May; 72(5):509-516. PubMed ID: 33251654 [TBL] [Abstract][Full Text] [Related]
3. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Chang PK; Ehrlich KC; Hua SS Int J Food Microbiol; 2006 Apr; 108(2):172-7. PubMed ID: 16430983 [TBL] [Abstract][Full Text] [Related]
4. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Chang PK; Ehrlich KC Int J Food Microbiol; 2010 Apr; 138(3):189-99. PubMed ID: 20163884 [TBL] [Abstract][Full Text] [Related]
5. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Geiser DM; Dorner JW; Horn BW; Taylor JW Fungal Genet Biol; 2000 Dec; 31(3):169-79. PubMed ID: 11273679 [TBL] [Abstract][Full Text] [Related]
6. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. Toyotome T; Hamada S; Yamaguchi S; Takahashi H; Kondoh D; Takino M; Kanesaki Y; Kamei K DNA Res; 2019 Feb; 26(1):95-103. PubMed ID: 30520983 [TBL] [Abstract][Full Text] [Related]
7. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. Chang PK; Abbas HK; Weaver MA; Ehrlich KC; Scharfenstein LL; Cotty PJ Int J Food Microbiol; 2012 Mar; 154(3):192-6. PubMed ID: 22285533 [TBL] [Abstract][Full Text] [Related]
8. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes. Hong SB; Lee M; Kim DH; Chung SH; Shin HD; Samson RA J Microbiol; 2013 Dec; 51(6):766-72. PubMed ID: 24385353 [TBL] [Abstract][Full Text] [Related]
9. Authentication of Aspergillus parasiticus strains in the genome database of the National Center for Biotechnology Information. Chang PK BMC Res Notes; 2021 Mar; 14(1):111. PubMed ID: 33757556 [TBL] [Abstract][Full Text] [Related]
10. Intraspecific Growth and Aflatoxin Inhibition Responses to Atoxigenic Sweany RR; DeRobertis CD; Kaller MD; Damann KE Phytopathology; 2022 Oct; 112(10):2084-2098. PubMed ID: 35502929 [TBL] [Abstract][Full Text] [Related]
11. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae. Chang PK; Scharfenstein LL; Solorzano CD; Abbas HK; Hua SS; Jones WA; Zablotowicz RM Int J Food Microbiol; 2015 May; 200():66-71. PubMed ID: 25689355 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. Yin Y; Lou T; Yan L; Michailides TJ; Ma Z J Appl Microbiol; 2009 Dec; 107(6):1857-65. PubMed ID: 19457031 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of Aspergillus flavus strains in China. Mamo FT; Shang B; Selvaraj JN; Wang Y; Liu Y J Microbiol; 2018 Feb; 56(2):119-127. PubMed ID: 29392555 [TBL] [Abstract][Full Text] [Related]
14. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. Jørgensen TR J Food Prot; 2007 Dec; 70(12):2916-34. PubMed ID: 18095455 [TBL] [Abstract][Full Text] [Related]
15. The vegetative compatibility group to which the US biocontrol agent Aspergillus flavus AF36 belongs is also endemic to Mexico. Ortega-Beltran A; Grubisha LC; Callicott KA; Cotty PJ J Appl Microbiol; 2016 Apr; 120(4):986-98. PubMed ID: 26744130 [TBL] [Abstract][Full Text] [Related]
17. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Ehrlich KC; Mack BM Toxins (Basel); 2014 Jun; 6(6):1916-28. PubMed ID: 24960201 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Lewis MH; Carbone I; Luis JM; Payne GA; Bowen KL; Hagan AK; Kemerait R; Heiniger R; Ojiambo PS Front Microbiol; 2019; 10():1738. PubMed ID: 31417528 [TBL] [Abstract][Full Text] [Related]
19. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Alshannaq AF; Gibbons JG; Lee MK; Han KH; Hong SB; Yu JH Sci Rep; 2018 Nov; 8(1):16871. PubMed ID: 30442975 [TBL] [Abstract][Full Text] [Related]
20. Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: A strategy for identifying potential antagonists, the example of almonds. Picot A; Doster M; Islam MS; Callicott K; Ortega-Beltran A; Cotty P; Michailides T Int J Food Microbiol; 2018 Jan; 265():55-64. PubMed ID: 29127811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]