These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 31429545)
1. Cobalt and Nickel Phosphates as Multifunctional Air-Cathodes for Rechargeable Hybrid Sodium-Air Battery Applications. Senthilkumar B; Irshad A; Barpanda P ACS Appl Mater Interfaces; 2019 Sep; 11(37):33811-33818. PubMed ID: 31429545 [TBL] [Abstract][Full Text] [Related]
2. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
4. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
5. Cobalt Metaphosphates as Economic Bifunctional Electrocatalysts for Hybrid Sodium-Air Batteries. Murugesan C; Musthafa M; Lochab S; Barpanda P Inorg Chem; 2021 Aug; 60(16):11974-11983. PubMed ID: 34328325 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically Structured Co(OH) Wang K; Wu W; Tang Z; Li L; Chen S; Bedford NM ACS Appl Mater Interfaces; 2019 Feb; 11(5):4983-4994. PubMed ID: 30621388 [TBL] [Abstract][Full Text] [Related]
7. Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries. Wang HF; Tang C; Wang B; Li BQ; Zhang Q Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28714208 [TBL] [Abstract][Full Text] [Related]
8. Cobalt-Based Metal-Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chen G; Zhang J; Wang F; Wang L; Liao Z; Zschech E; Müllen K; Feng X Chemistry; 2018 Dec; 24(69):18413-18418. PubMed ID: 30192997 [TBL] [Abstract][Full Text] [Related]
9. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries. Abirami M; Hwang SM; Yang J; Senthilkumar ST; Kim J; Go WS; Senthilkumar B; Song HK; Kim Y ACS Appl Mater Interfaces; 2016 Dec; 8(48):32778-32787. PubMed ID: 27934150 [TBL] [Abstract][Full Text] [Related]
10. Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. Zou H; He B; Kuang P; Yu J; Fan K ACS Appl Mater Interfaces; 2018 Jul; 10(26):22311-22319. PubMed ID: 29888588 [TBL] [Abstract][Full Text] [Related]
11. Ni Cui Z; Fu G; Li Y; Goodenough JB Angew Chem Int Ed Engl; 2017 Aug; 56(33):9901-9905. PubMed ID: 28666066 [TBL] [Abstract][Full Text] [Related]
12. Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn-Air Batteries. Kim SW; Son Y; Choi K; Kim SI; Son Y; Park J; Lee JH; Jang JH ChemSusChem; 2018 Dec; 11(24):4203-4208. PubMed ID: 30381898 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Prabu M; Ketpang K; Shanmugam S Nanoscale; 2014 Mar; 6(6):3173-81. PubMed ID: 24496578 [TBL] [Abstract][Full Text] [Related]
14. Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc-air batteries. Yan S; Li H; Zhu J; Xiong W; Lei R; Wang X Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33770782 [TBL] [Abstract][Full Text] [Related]
15. Co-Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li-Air Batteries. Chang Z; Yu F; Liu Z; Peng S; Guan M; Shen X; Zhao S; Liu N; Wu Y; Chen Y ACS Appl Mater Interfaces; 2020 Jan; 12(4):4366-4372. PubMed ID: 31867946 [TBL] [Abstract][Full Text] [Related]
16. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Shinde SS; Lee CH; Sami A; Kim DH; Lee SU; Lee JH ACS Nano; 2017 Jan; 11(1):347-357. PubMed ID: 28001038 [TBL] [Abstract][Full Text] [Related]
17. Ultrathin Co He Y; Zhang J; He G; Han X; Zheng X; Zhong C; Hu W; Deng Y Nanoscale; 2017 Jun; 9(25):8623-8630. PubMed ID: 28608902 [TBL] [Abstract][Full Text] [Related]
18. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. Ma L; Chen S; Pei Z; Huang Y; Liang G; Mo F; Yang Q; Su J; Gao Y; Zapien JA; Zhi C ACS Nano; 2018 Feb; 12(2):1949-1958. PubMed ID: 29432686 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn-Air Battery and Water Splitting. Zhang J; Bai X; Wang T; Xiao W; Xi P; Wang J; Gao D; Wang J Nanomicro Lett; 2019; 11(1):2. PubMed ID: 30687731 [TBL] [Abstract][Full Text] [Related]
20. Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery. Zhao J; He Y; Chen Z; Zheng X; Han X; Rao D; Zhong C; Hu W; Deng Y ACS Appl Mater Interfaces; 2019 Feb; 11(5):4915-4921. PubMed ID: 30537808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]