These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31429551)

  • 1. Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive" and Porous Polymeric Coating.
    Das S; Das A; Parbat D; Manna U
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34316-34329. PubMed ID: 31429551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability †.
    Das A; Deka J; Rather AM; Bhunia BK; Saikia PP; Mandal BB; Raidongia K; Manna U
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42354-42365. PubMed ID: 29119779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green and Rapid Synthesis of Durable and Super-Oil (under Water) and Water (in Air) Repellent Interfaces.
    Rather AM; Manna U
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23451-23457. PubMed ID: 29979031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Scalable Chemical Approach for the Synthesis of a Highly Tolerant and Efficient Oil Absorbent.
    Shome A; Maji K; Rather AM; Yashwanth A; Patel DK; Manna U
    Chem Asian J; 2019 Dec; 14(24):4732-4740. PubMed ID: 31529669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Waste Paper-Derived Chemically 'Reactive' and Durable Functional Material with Tailorable Mechanical Property Following an Ambient and Sustainable Chemical Approach.
    Shome A; Rather AM; Borbora A; Srikrishnarka P; Baidya A; Pradeep T; Manna U
    Chem Asian J; 2021 Jul; 16(14):1988-2001. PubMed ID: 34061458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customizing oil-wettability in air-without affecting extreme water repellency.
    Das A; Manna U
    Nanoscale; 2020 Dec; 12(48):24349-24356. PubMed ID: 33169782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?
    Maji K; Das A; Hirtz M; Manna U
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14531-14541. PubMed ID: 32103660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrasion tolerant, non-stretchable and super-water-repellent conductive & ultrasensitive pattern for identifying slow, fast, weak and strong human motions under diverse conditions.
    Das S; Singh R; Das A; Bag S; Paily RP; Manna U
    Mater Horiz; 2021 Oct; 8(10):2851-2858. PubMed ID: 34498655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces.
    Baruah U; Das A; Manna U
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28571-28581. PubMed ID: 31298026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets.
    Das A; Maji K; Naskar S; Manna U
    Chem Sci; 2020 Mar; 11(25):6556-6566. PubMed ID: 34094121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Reactive' nano-complex coated medical cotton: a facile avenue for tailored release of small molecules.
    Rather AM; Mahato S; Maji K; Gogoi N; Manna U
    Nanoscale; 2017 Nov; 9(42):16154-16165. PubMed ID: 28809421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water.
    Parbat D; Gaffar S; Rather AM; Gupta A; Manna U
    Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities.
    Das S; Kumar R; Parbat D; Sekula-Neuner S; Hirtz M; Manna U
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2935-2943. PubMed ID: 31852187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of 'tolerant and hard' superhydrophobic coatings to freeze physical deformation.
    Dhar M; Das A; Shome A; Borbora A; Manna U
    Mater Horiz; 2021 Oct; 8(10):2717-2725. PubMed ID: 34617554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis of a chemically reactive and polymeric luminescent gel.
    Baruah U; Manna U
    Chem Sci; 2020 Dec; 12(6):2097-2107. PubMed ID: 34163973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimic nature, beyond nature: facile synthesis of durable superhydrophobic textiles using organosilanes.
    Wu L; Zhang J; Li B; Wang A
    J Mater Chem B; 2013 Oct; 1(37):4756-4763. PubMed ID: 32261159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of super durable superhydrophobic materials.
    Wu L; Zhang J; Li B; Fan L; Li L; Wang A
    J Colloid Interface Sci; 2014 Oct; 432():31-42. PubMed ID: 25069050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically reactive protein nanoparticles for synthesis of a durable and deformable superhydrophobic material.
    Shome A; Rather AM; Manna U
    Nanoscale Adv; 2019 May; 1(5):1746-1753. PubMed ID: 36134226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use.
    Das I; De G
    Sci Rep; 2015 Dec; 5():18503. PubMed ID: 26678754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.