BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31429791)

  • 1. Antibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples.
    Casimiro-Soriguer CS; Loucera C; Perez Florido J; López-López D; Dopazo J
    Biol Direct; 2019 Aug; 14(1):15. PubMed ID: 31429791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning techniques for creating urban microbial fingerprints.
    Ryan FJ
    Biol Direct; 2019 Aug; 14(1):13. PubMed ID: 31420049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning framework to determine geolocations from metagenomic profiling.
    Huang L; Xu C; Yang W; Yu R
    Biol Direct; 2020 Nov; 15(1):27. PubMed ID: 33225966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data.
    Walker AR; Datta S
    Biol Direct; 2019 Jul; 14(1):11. PubMed ID: 31340852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling city-specific signature and identifying sample origin locations for the data from CAMDA MetaSUB challenge.
    Zhang R; Walker AR; Datta S
    Biol Direct; 2021 Jan; 16(1):1. PubMed ID: 33397406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal microbiota domination under extreme selective pressures characterized by metagenomic read cloud sequencing and assembly.
    Kang JB; Siranosian BA; Moss EL; Banaei N; Andermann TM; Bhatt AS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):585. PubMed ID: 31787070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling microbial strains in urban environments using metagenomic sequencing data.
    Zolfo M; Asnicar F; Manghi P; Pasolli E; Tett A; Segata N
    Biol Direct; 2018 May; 13(1):9. PubMed ID: 29743119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome.
    Madrigal P; Singh NK; Wood JM; Gaudioso E; Hernández-Del-Olmo F; Mason CE; Venkateswaran K; Beheshti A
    Microbiome; 2022 Aug; 10(1):134. PubMed ID: 35999570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental metagenome classification for constructing a microbiome fingerprint.
    Kawulok J; Kawulok M; Deorowicz S
    Biol Direct; 2019 Nov; 14(1):20. PubMed ID: 31722729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-based microbiome representation enhances host phenotype classification.
    Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaBinG2: a fast and accurate metagenomic sequence classification system for samples with many unknown organisms.
    Qiao Y; Jia B; Hu Z; Sun C; Xiang Y; Wei C
    Biol Direct; 2018 Aug; 13(1):15. PubMed ID: 30134953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning.
    Dhungel E; Mreyoud Y; Gwak HJ; Rajeh A; Rho M; Ahn TH
    BMC Bioinformatics; 2021 Jan; 22(1):25. PubMed ID: 33461494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal deep learning applied to classify healthy and disease states of human microbiome.
    Lee SJ; Rho M
    Sci Rep; 2022 Jan; 12(1):824. PubMed ID: 35039534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil.
    Sukhum KV; Vargas RC; Boolchandani M; D'Souza AW; Patel S; Kesaraju A; Walljasper G; Hegde H; Ye Z; Valenzuela RK; Gunderson P; Bendixsen C; Dantas G; Shukla SK
    mBio; 2021 May; 12(3):. PubMed ID: 33975936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles.
    Walker AR; Grimes TL; Datta S; Datta S
    Biol Direct; 2018 May; 13(1):10. PubMed ID: 29789016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of metagenomics in the human gut microbiome.
    Wang WL; Xu SY; Ren ZG; Tao L; Jiang JW; Zheng SS
    World J Gastroenterol; 2015 Jan; 21(3):803-14. PubMed ID: 25624713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox.
    Wirbel J; Zych K; Essex M; Karcher N; Kartal E; Salazar G; Bork P; Sunagawa S; Zeller G
    Genome Biol; 2021 Mar; 22(1):93. PubMed ID: 33785070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.