BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31429817)

  • 1. Investigating the transient and persistent effects of heat on
    Pickering DS; Vernon JJ; Freeman J; Wilcox MH; Chilton CH
    J Med Microbiol; 2019 Oct; 68(10):1445-1454. PubMed ID: 31429817
    [No Abstract]   [Full Text] [Related]  

  • 2. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile.
    Rodriguez-Palacios A; Lejeune JT
    Appl Environ Microbiol; 2011 May; 77(9):3085-91. PubMed ID: 21398481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro production of Clostridium difficile spores for use in the efficacy evaluation of disinfectants: a precollaborative investigation.
    Hasan JA; Japal KM; Christensen ER; Samalot-Freire LC
    J AOAC Int; 2011; 94(1):259-72. PubMed ID: 21391503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effect of supplementation on Clostridioides (Clostridium) difficile spore recovery in two solid agars.
    Pickering DS; Vernon JJ; Freeman J; Wilcox MH; Chilton CH
    Anaerobe; 2018 Apr; 50():38-43. PubMed ID: 29408598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery.
    Chilton CH; Freeman J; Baines SD; Crowther GS; Nicholson S; Wilcox MH
    J Antimicrob Chemother; 2013 Sep; 68(9):2078-82. PubMed ID: 23759507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm-derived spores of Clostridioides (Clostridium) difficile exhibit increased thermotolerance compared to planktonic spores.
    Pickering DS; Wilcox MH; Chilton CH
    Anaerobe; 2018 Dec; 54():169-171. PubMed ID: 30292821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy.
    Wang S; Shen A; Setlow P; Li YQ
    J Bacteriol; 2015 Jul; 197(14):2361-73. PubMed ID: 25939833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile shows no trade-off between toxin and spore production within the human host.
    Blanco N; Walk S; Malani AN; Rickard A; Benn M; Eisenberg M; Zhang M; Foxman B
    J Med Microbiol; 2018 May; 67(5):631-640. PubMed ID: 29533173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production.
    Chilton CH; Crowther GS; Ashwin H; Longshaw CM; Wilcox MH
    PLoS One; 2016; 11(8):e0161200. PubMed ID: 27556739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores.
    Joshi LT; Welsch A; Hawkins J; Baillie L
    Lett Appl Microbiol; 2017 Sep; 65(3):199-205. PubMed ID: 28639362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of Clostridium difficile spores at low temperatures.
    Deng K; Plaza-Garrido A; Torres JA; Paredes-Sabja D
    Food Microbiol; 2015 Apr; 46():218-221. PubMed ID: 25475288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of Clostridium difficile spores at low water activity.
    Deng K; Talukdar PK; Sarker MR; Paredes-Sabja D; Torres JA
    Food Microbiol; 2017 Aug; 65():274-278. PubMed ID: 28400013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suboptimal Bacillus licheniformis and Bacillus weihenstephanensis Spore Incubation Conditions Increase Heterogeneity of Spore Outgrowth Time.
    Trunet C; Mtimet N; Mathot AG; Postollec F; Leguerinel I; Couvert O; Broussolle V; Carlin F; Coroller L
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31900309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro.
    Mooyottu S; Flock G; Venkitanarayanan K
    J Med Microbiol; 2017 Aug; 66(8):1229-1234. PubMed ID: 28786786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination.
    Kevorkian Y; Shen A
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28874406
    [No Abstract]   [Full Text] [Related]  

  • 16. Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species.
    He L; Chen Z; Wang S; Wu M; Setlow P; Li YQ
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor.
    Bhattacharjee D; Francis MB; Ding X; McAllister KN; Shrestha R; Sorg JA
    J Bacteriol; 2015 Dec; 198(5):777-86. PubMed ID: 26668265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Clostridium difficile spores by microwave irradiation.
    Ojha SC; Chankhamhaengdecha S; Singhakaew S; Ounjai P; Janvilisri T
    Anaerobe; 2016 Apr; 38():14-20. PubMed ID: 26546732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells.
    Smelt JP; Bos AP; Kort R; Brul S
    Int J Food Microbiol; 2008 Nov; 128(1):34-40. PubMed ID: 18926580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.