These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31429817)

  • 21. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal resistance of Clostridium difficile endospores in dairy compost upon exposure to wet and dry heat treatments.
    Dharmasena M; Wei T; Bridges WC; Jiang X
    J Appl Microbiol; 2019 Jul; 127(1):274-283. PubMed ID: 31034124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of spores of Clostridium difficile altered by heat or alkali.
    Kamiya S; Yamakawa K; Ogura H; Nakamura S
    J Med Microbiol; 1989 Mar; 28(3):217-21. PubMed ID: 2926793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile.
    Perez J; Springthorpe VS; Sattar SA
    J AOAC Int; 2011; 94(2):618-26. PubMed ID: 21563698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin.
    Nerandzic MM; Donskey CJ
    PLoS One; 2013; 8(1):e54740. PubMed ID: 23349961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Germinant Synergy Facilitates Clostridium difficile Spore Germination under Physiological Conditions.
    Kochan TJ; Shoshiev MS; Hastie JL; Somers MJ; Plotnick YM; Gutierrez-Munoz DF; Foss ED; Schubert AM; Smith AD; Zimmerman SK; Carlson PE; Hanna PC
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30185513
    [No Abstract]   [Full Text] [Related]  

  • 27. Evaluation of growth and sporulation of a non-toxigenic strain of Clostridioides difficile (Z31) and its shelf viability.
    Oliveira Júnior CA; Silva ROS; Cruz DSG; Pires IH; Alves GG; Lobato FCF
    Braz J Microbiol; 2019 Jan; 50(1):263-269. PubMed ID: 30637658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination.
    Donnelly ML; Li W; Li YQ; Hinkel L; Setlow P; Shen A
    mBio; 2017 Jan; 8(1):. PubMed ID: 28096487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium sporogenes PA3679.
    Reddy NR; Patazca E; Morrissey TR; Skinner GE; Loeza V; Schill KM; Larkin JW
    J Food Prot; 2016 Feb; 79(2):253-62. PubMed ID: 26818986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Germination efficiency of clinical Clostridium difficile spores and correlation with ribotype, disease severity and therapy failure.
    Moore P; Kyne L; Martin A; Solomon K
    J Med Microbiol; 2013 Sep; 62(Pt 9):1405-1413. PubMed ID: 23518657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing.
    Marshall KM; Nowaczyk L; Morrissey TR; Loeza V; Halik LA; Skinner GE; Reddy NR; Fleischman GJ; Larkin JW
    J Food Prot; 2015 Jan; 78(1):146-50. PubMed ID: 25581189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.
    Warda AK; den Besten HM; Sha N; Abee T; Nierop Groot MN
    Int J Food Microbiol; 2015 May; 201():27-34. PubMed ID: 25727186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat resistance of Clostridium sordellii spores.
    Kozma-Sipos Z; Szigeti J; Asványi B; Varga L
    Anaerobe; 2010 Jun; 16(3):226-8. PubMed ID: 20152919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficacy of heat and ethanol spore treatments for the isolation of psychrotrophic Clostridium spp. associated with the spoilage of chilled vacuum-packed meats.
    Broda DM; De Lacy KM; Bell RG
    Int J Food Microbiol; 1998 Jan; 39(1-2):61-8. PubMed ID: 9562877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of Clostridium difficile.
    Skinner K; Birchall S; Corbett D; Thommes P; Locher HH
    J Med Microbiol; 2018 Sep; 67(9):1402-1409. PubMed ID: 30052178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Updates on Clostridium difficile spore biology.
    Gil F; Lagos-Moraga S; Calderón-Romero P; Pizarro-Guajardo M; Paredes-Sabja D
    Anaerobe; 2017 Jun; 45():3-9. PubMed ID: 28254263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving culture media for the isolation of Clostridium difficile from compost.
    Dharmasena M; Jiang X
    Anaerobe; 2018 Jun; 51():1-7. PubMed ID: 29518533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile.
    Pellissery AJ; Vinayamohan PG; Yin HB; Mooyottu S; Venkitanarayanan K
    J Med Microbiol; 2019 Jul; 68(7):1118-1128. PubMed ID: 31172910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of Clostridium difficile spore outgrowth by synergistic effects of nisin and lysozyme.
    Chai C; Lee KS; Imm GS; Kim YS; Oh SW
    Can J Microbiol; 2017 Jul; 63(7):638-643. PubMed ID: 28346844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.