BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31430128)

  • 1. Detection of Biomarkers in Blood Using Liquid Crystals Assisted with Aptamer-Target Recognition Triggered in Situ Rolling Circle Amplification on Magnetic Beads.
    Qi L; Hu Q; Kang Q; Bi Y; Jiang Y; Yu L
    Anal Chem; 2019 Sep; 91(18):11653-11660. PubMed ID: 31430128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid crystal-based sensing platform for detection of Pb
    Liu J; Hu Q; Qi L; Lin JM; Yu L
    J Hazard Mater; 2020 Dec; 400():123218. PubMed ID: 32593940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB.
    Li D; Li X; Shen B; Li P; Chen Y; Ding S; Chen W
    Anal Chim Acta; 2019 Dec; 1092():102-107. PubMed ID: 31708022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer.
    Qi L; Liu S; Jiang Y; Lin JM; Yu L; Hu Q
    Anal Chem; 2020 Mar; 92(5):3867-3873. PubMed ID: 32069024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS; Zhang S; Zhou H; Shen GL; Yu R
    Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Detection of Circulating Tumor Cells Based on DNA Generated Electrochemical Current and Rolling Circle Amplification.
    Shen C; Liu S; Li X; Yang M
    Anal Chem; 2019 Sep; 91(18):11614-11619. PubMed ID: 31452368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric liquid crystal-based assay for the ultrasensitive detection of AFB1 assisted with rolling circle amplification.
    Wu W; Xia S; Zhao M; Ping J; Lin JM; Hu Q
    Anal Chim Acta; 2022 Aug; 1220():340065. PubMed ID: 35868704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification.
    Hong C; Zhang X; Ye S; Yang H; Huang Z; Yang D; Cai R; Tan W
    ACS Appl Mater Interfaces; 2021 May; 13(17):19695-19700. PubMed ID: 33881296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy.
    Shen J; Wang H; Li C; Zhao Y; Yu X; Luo X
    Biosens Bioelectron; 2017 Apr; 90():356-362. PubMed ID: 27940239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive Aptasensor for α-Amatoxin Detection Based on the DNA Tetrahedral Nanostructure Triggering Rolling Circle Amplification and Signal Amplification.
    Tian R; Sun J; Ye Y; Lu X; Wang W; Sun X
    J Agric Food Chem; 2024 May; 72(17):10046-10054. PubMed ID: 38648503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification.
    Yi X; Li L; Peng Y; Guo L
    Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline.
    Rouhbakhsh Z; Verdian A; Rajabzadeh G
    Talanta; 2020 Jan; 206():120246. PubMed ID: 31514901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification.
    Tong P; Zhao WW; Zhang L; Xu JJ; Chen HY
    Biosens Bioelectron; 2012 Mar; 33(1):146-51. PubMed ID: 22270050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A.
    Hao L; Wang W; Shen X; Wang S; Li Q; An F; Wu S
    J Agric Food Chem; 2020 Jan; 68(1):369-375. PubMed ID: 31829586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lighting-up RNA aptamer transcription synchronization amplification for ultrasensitive and label-free imaging of microRNA in single cells.
    Li D; Yang F; Yuan R; Xiang Y
    Anal Chim Acta; 2020 Mar; 1102():84-90. PubMed ID: 32043999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasingly branched rolling circle amplification for the cancer gene detection.
    Li H; Xu J; Wang Z; Wu ZS; Jia L
    Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin.
    Chen Q; Tian R; Liu G; Wen Y; Bian X; Luan D; Wang H; Lai K; Yan J
    Biosens Bioelectron; 2022 Jul; 207():114187. PubMed ID: 35325717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity binding-mediated fluorometric protein assay based on the use of target-triggered DNA assembling probes and aptamers labelled with upconversion nanoparticles: application to the determination of platelet derived growth factor-BB.
    Liu Y; Liu WJ; Hu J; Li Y; Wang Y; Zhao LX
    Mikrochim Acta; 2019 Dec; 187(1):9. PubMed ID: 31797061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification.
    Huang R; He L; Li S; Liu H; Jin L; Chen Z; Zhao Y; Li Z; Deng Y; He N
    Nanoscale; 2020 Jan; 12(4):2445-2451. PubMed ID: 31894795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.