These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31430276)

  • 1. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian inference of metabolic kinetics from genome-scale multiomics data.
    St John PC; Strutz J; Broadbelt LJ; Tyo KEJ; Bomble YJ
    PLoS Comput Biol; 2019 Nov; 15(11):e1007424. PubMed ID: 31682600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant
    Miskovic L; Alff-Tuomala S; Soh KC; Barth D; Salusjärvi L; Pitkänen JP; Ruohonen L; Penttilä M; Hatzimanikatis V
    Biotechnol Biofuels; 2017; 10():166. PubMed ID: 28674555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions.
    Paulson JA; Martin-Casas M; Mesbah A
    PLoS Comput Biol; 2019 Aug; 15(8):e1007308. PubMed ID: 31469832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of uncertainties in biochemical reactions.
    Mišković L; Hatzimanikatis V
    Biotechnol Bioeng; 2011 Feb; 108(2):413-23. PubMed ID: 20830674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control analysis under uncertainty: framework development and case studies.
    Wang L; Birol I; Hatzimanikatis V
    Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems.
    Daigle BJ; Roh MK; Petzold LR; Niemi J
    BMC Bioinformatics; 2012 May; 13():68. PubMed ID: 22548918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing kinetic models of metabolism at genome-scales: A review.
    Srinivasan S; Cluett WR; Mahadevan R
    Biotechnol J; 2015 Sep; 10(9):1345-59. PubMed ID: 26332243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian kinetic modeling for tracer-based metabolomic data.
    Zhang X; Su Y; Lane AN; Stromberg AJ; Fan TWM; Wang C
    BMC Bioinformatics; 2023 Mar; 24(1):108. PubMed ID: 36949395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.
    Schillings C; Sunnåker M; Stelling J; Schwab C
    PLoS Comput Biol; 2015 Aug; 11(8):e1004457. PubMed ID: 26317784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of enzyme kinetic data from various sources.
    Borger S; Uhlendorf J; Helbig A; Liebermeister W
    In Silico Biol; 2007; 7(2 Suppl):S73-9. PubMed ID: 17822393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():42. PubMed ID: 17173670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of model complexity and size on metabolic flux distribution and control: case study in Escherichia coli.
    Hameri T; Fengos G; Hatzimanikatis V
    BMC Bioinformatics; 2021 Mar; 22(1):134. PubMed ID: 33743594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. k-OptForce: integrating kinetics with flux balance analysis for strain design.
    Chowdhury A; Zomorrodi AR; Maranas CD
    PLoS Comput Biol; 2014 Feb; 10(2):e1003487. PubMed ID: 24586136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.