BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 31430398)

  • 21. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside.
    Roy S; Sethi TK; Taylor D; Kim YJ; Johnson DB
    J Leukoc Biol; 2020 Oct; 108(4):1455-1489. PubMed ID: 32557857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploratory open-label clinical study to determine the S-588410 cancer peptide vaccine-induced tumor-infiltrating lymphocytes and changes in the tumor microenvironment in esophageal cancer patients.
    Daiko H; Marafioti T; Fujiwara T; Shirakawa Y; Nakatsura T; Kato K; Puccio I; Hikichi T; Yoshimura S; Nakagawa T; Furukawa M; Stoeber K; Nagira M; Ide N; Kojima T
    Cancer Immunol Immunother; 2020 Nov; 69(11):2247-2257. PubMed ID: 32500232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical and immunological effects of mRNA vaccines in malignant diseases.
    Heine A; Juranek S; Brossart P
    Mol Cancer; 2021 Mar; 20(1):52. PubMed ID: 33722265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An HER2 DNA vaccine with evolution-selected amino acid substitutions reveals a fundamental principle for cancer vaccine formulation in HER2 transgenic mice.
    Jones RF; Reyes JD; Gibson HM; Jacob JB; Vaishampayan U; Ratner S; Chen K; Wei WZ
    Cancer Immunol Immunother; 2019 Jul; 68(7):1143-1155. PubMed ID: 31177328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy.
    Supabphol S; Li L; Goedegebuure SP; Gillanders WE
    Expert Opin Investig Drugs; 2021 May; 30(5):529-541. PubMed ID: 33641576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neoantigen Vaccines Pass the Immunogenicity Test.
    Linette GP; Carreno BM
    Trends Mol Med; 2017 Oct; 23(10):869-871. PubMed ID: 28867556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering New Approaches to Cancer Vaccines.
    Mehta NK; Moynihan KD; Irvine DJ
    Cancer Immunol Res; 2015 Aug; 3(8):836-43. PubMed ID: 26156157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer immunotherapy: moving forward with peptide T cell vaccines.
    Kumai T; Fan A; Harabuchi Y; Celis E
    Curr Opin Immunol; 2017 Aug; 47():57-63. PubMed ID: 28734176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Irradiation Enhances Abscopal Anti-tumor Effects of Antigen-Specific Immunotherapy through Regulating Tumor Microenvironment.
    Chang MC; Chen YL; Lin HW; Chiang YC; Chang CF; Hsieh SF; Chen CA; Sun WZ; Cheng WF
    Mol Ther; 2018 Feb; 26(2):404-419. PubMed ID: 29248428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of Next-Generation Sequencing in Neoantigen Prediction and Cancer Vaccine Development.
    Lancaster EM; Jablons D; Kratz JR
    Genet Test Mol Biomarkers; 2020 Feb; 24(2):59-66. PubMed ID: 30907630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Personalized cancer vaccines: adjuvants are important, too.
    Gouttefangeas C; Rammensee HG
    Cancer Immunol Immunother; 2018 Dec; 67(12):1911-1918. PubMed ID: 29644387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MHC class II restricted neoantigen: A promising target in tumor immunotherapy.
    Sun Z; Chen F; Meng F; Wei J; Liu B
    Cancer Lett; 2017 Apr; 392():17-25. PubMed ID: 28104443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma.
    Butterfield LH; Vujanovic L; Santos PM; Maurer DM; Gambotto A; Lohr J; Li C; Waldman J; Chandran U; Lin Y; Lin H; Tawbi HA; Tarhini AA; Kirkwood JM
    J Immunother Cancer; 2019 Apr; 7(1):113. PubMed ID: 31014399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Update on Adoptive T-Cell Therapy and Neoantigen Vaccines.
    Ott PA; Dotti G; Yee C; Goff SL
    Am Soc Clin Oncol Educ Book; 2019 Jan; 39():e70-e78. PubMed ID: 31099621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade.
    Chon HJ; Lee WS; Yang H; Kong SJ; Lee NK; Moon ES; Choi J; Han EC; Kim JH; Ahn JB; Kim JH; Kim C
    Clin Cancer Res; 2019 Mar; 25(5):1612-1623. PubMed ID: 30538109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant
    Deng W; Lira V; Hudson TE; Lemmens EE; Hanson WG; Flores R; Barajas G; Katibah GE; Desbien AL; Lauer P; Leong ML; Portnoy DA; Dubensky TW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8179-8184. PubMed ID: 30038013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.
    Thomas R; Al-Khadairi G; Roelands J; Hendrickx W; Dermime S; Bedognetti D; Decock J
    Front Immunol; 2018; 9():947. PubMed ID: 29770138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neoantigen vaccine: an emerging tumor immunotherapy.
    Peng M; Mo Y; Wang Y; Wu P; Zhang Y; Xiong F; Guo C; Wu X; Li Y; Li X; Li G; Xiong W; Zeng Z
    Mol Cancer; 2019 Aug; 18(1):128. PubMed ID: 31443694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.