BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31430496)

  • 1. Engineering and characterization of hybrid carboxylic acid reductases.
    Kramer L; Le X; Hankore ED; Wilson MA; Guo J; Niu W
    J Biotechnol; 2019 Oct; 304():52-56. PubMed ID: 31430496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering for bioreduction of carboxylic acids.
    Tee KL; Xu JH; Wong TS
    J Biotechnol; 2019 Sep; 303():53-64. PubMed ID: 31325477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylic acid reductases in metabolic engineering.
    Butler N; Kunjapur AM
    J Biotechnol; 2020 Jan; 307():1-14. PubMed ID: 31628973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase.
    Qu G; Liu B; Zhang K; Jiang Y; Guo J; Wang R; Miao Y; Zhai C; Sun Z
    J Biotechnol; 2019 Dec; 306():97-104. PubMed ID: 31550488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxylic acid reductase enzymes (CARs).
    Winkler M
    Curr Opin Chem Biol; 2018 Apr; 43():23-29. PubMed ID: 29127833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functionally-distinct carboxylic acid reductase PcCAR4 unearthed from a repertoire of type IV CARs in the white-rot fungus Pycnoporus cinnabarinus.
    Ling JG; Mansor MH; Abdul Murad AM; Mohd Khalid R; Quay DHX; Winkler M; Abu Bakar FD
    J Biotechnol; 2020 Jan; 307():55-62. PubMed ID: 31545972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxylic acid reductase: Structure and mechanism.
    Gahloth D; Aleku GA; Leys D
    J Biotechnol; 2020 Jan; 307():107-113. PubMed ID: 31689469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes.
    Stolterfoht H; Schwendenwein D; Sensen CW; Rudroff F; Winkler M
    J Biotechnol; 2017 Sep; 257():222-232. PubMed ID: 28223183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylic acid reductases (CARs): An industrial perspective.
    Derrington SR; Turner NJ; France SP
    J Biotechnol; 2019 Oct; 304():78-88. PubMed ID: 31430498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals.
    Kramer L; Hankore ED; Liu Y; Liu K; Jimenez E; Guo J; Niu W
    Chembiochem; 2018 Jul; 19(13):1452-1460. PubMed ID: 29659112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Insights into the Catalytic Mechanism of Bacterial Carboxylic Acid Reductase.
    Qu G; Fu M; Zhao L; Liu B; Liu P; Fan W; Ma JA; Sun Z
    J Chem Inf Model; 2019 Feb; 59(2):832-841. PubMed ID: 30688451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.
    Khusnutdinova AN; Flick R; Popovic A; Brown G; Tchigvintsev A; Nocek B; Correia K; Joo JC; Mahadevan R; Yakunin AF
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28762640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of carboxylic acid reductase (CAR) from Thermothelomyces thermophila and its evaluation for vanillin synthesis.
    Horvat M; Fiume G; Fritsche S; Winkler M
    J Biotechnol; 2019 Oct; 304():44-51. PubMed ID: 31419454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.
    Finnigan W; Thomas A; Cromar H; Gough B; Snajdrova R; Adams JP; Littlechild JA; Harmer NJ
    ChemCatChem; 2017 Mar; 9(6):1005-1017. PubMed ID: 28450969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction.
    Thomas A; Cutlan R; Finnigan W; van der Giezen M; Harmer N
    Commun Biol; 2019; 2():429. PubMed ID: 31799431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology.
    Basri RS; Rahman RNZRA; Kamarudin NHA; Ali MSM
    Int J Biol Macromol; 2023 Jun; 240():124526. PubMed ID: 37080403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis and stability of the carboxylic acid reductase MAB4714 from Mycobacterium abscessus.
    Fedorchuk TP; Khusnutdinova AN; Flick R; Yakunin AF
    J Biotechnol; 2019 Sep; 303():72-79. PubMed ID: 31381941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries.
    Hulley ME; Toogood HS; Fryszkowska A; Mansell D; Stephens GM; Gardiner JM; Scrutton NS
    Chembiochem; 2010 Nov; 11(17):2433-47. PubMed ID: 21064170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational hinge engineering of carboxylic acid reductase from Mycobacterium smegmatis enhances its catalytic efficiency in biocatalysis.
    Wang L; Sun Y; Diao S; Jiang S; Wang H; Wei D
    Biotechnol J; 2022 Feb; 17(2):e2100441. PubMed ID: 34862729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations.
    Steinkellner G; Gruber CC; Pavkov-Keller T; Binter A; Steiner K; Winkler C; Lyskowski A; Schwamberger O; Oberer M; Schwab H; Faber K; Macheroux P; Gruber K
    Nat Commun; 2014 Jun; 5():4150. PubMed ID: 24954722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.